This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP)simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPo...This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP)simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3).FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs)with different sets of future emission,concentration,and land-use scenarios.All Tier 1 and 2 experiments were carried out and were initialized using historical runs.A branch run method was used for the ensemble simulations.Model outputs were three-hourly,six-hourly,daily,and/or monthly mean values for the primary variables of the four component models.An evaluation and analysis of the simulations is also presented.The present results are expected to aid research into future climate change and socio-economic development.展开更多
The datasets of the five Land-offline Model Intercomparison Project(LMIP)experiments using the Chinese Academy of Sciences Land Surface Model(CAS-LSM)of CAS Flexible Global-Ocean-Atmosphere-Land System Model Grid-poin...The datasets of the five Land-offline Model Intercomparison Project(LMIP)experiments using the Chinese Academy of Sciences Land Surface Model(CAS-LSM)of CAS Flexible Global-Ocean-Atmosphere-Land System Model Grid-point version 3(CAS FGOALS-g3)are presented in this study.These experiments were forced by five global meteorological forcing datasets,which contributed to the framework of the Land Surface Snow and Soil Moisture Model Intercomparison Project(LS3MIP)of CMIP6.These datasets have been released on the Earth System Grid Federation node.In this paper,the basic descriptions of the CAS-LSM and the five LMIP experiments are shown.The performance of the soil moisture,snow,and land-atmosphere energy fluxes was preliminarily validated using satellite-based observations.Results show that their mean states,spatial patterns,and seasonal variations can be reproduced well by the five LMIP simulations.It suggests that these datasets can be used to investigate the evolutionary mechanisms of the global water and energy cycles during the past century.展开更多
基金This study was supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0603903,2017YFA0603901,and 2017YFA0603902)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB42010404)the National Basic Research(973)Program of China(Grant Nos.2015CB954102).
文摘This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP)simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3).FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs)with different sets of future emission,concentration,and land-use scenarios.All Tier 1 and 2 experiments were carried out and were initialized using historical runs.A branch run method was used for the ensemble simulations.Model outputs were three-hourly,six-hourly,daily,and/or monthly mean values for the primary variables of the four component models.An evaluation and analysis of the simulations is also presented.The present results are expected to aid research into future climate change and socio-economic development.
文摘The datasets of the five Land-offline Model Intercomparison Project(LMIP)experiments using the Chinese Academy of Sciences Land Surface Model(CAS-LSM)of CAS Flexible Global-Ocean-Atmosphere-Land System Model Grid-point version 3(CAS FGOALS-g3)are presented in this study.These experiments were forced by five global meteorological forcing datasets,which contributed to the framework of the Land Surface Snow and Soil Moisture Model Intercomparison Project(LS3MIP)of CMIP6.These datasets have been released on the Earth System Grid Federation node.In this paper,the basic descriptions of the CAS-LSM and the five LMIP experiments are shown.The performance of the soil moisture,snow,and land-atmosphere energy fluxes was preliminarily validated using satellite-based observations.Results show that their mean states,spatial patterns,and seasonal variations can be reproduced well by the five LMIP simulations.It suggests that these datasets can be used to investigate the evolutionary mechanisms of the global water and energy cycles during the past century.