Dimethylations of histone H3 lysine 9 and lysine 27 are important epigenetic marks associated with transcription repression. Here, we identified KIAA1718 (KDM7A) as a novel histone demethylase specific for these two...Dimethylations of histone H3 lysine 9 and lysine 27 are important epigenetic marks associated with transcription repression. Here, we identified KIAA1718 (KDM7A) as a novel histone demethylase specific for these two repressing marks. Using mouse embryonic stem cells, we demonstrated that KIAA1718 expression increased at the early phase of neural differentiation. Knockdown of the gene blocked neural differentiation and the effect was rescued by the wild-type human gene, and not by a catalytically inactive mutant. In addition, overexpression of KIAA1718 accelerated neural differentiation. We provide the evidence that the pro-neural differentiation effect of KDM7A is mediated through direct transcriptional activation of FGF4, a signal molecule implicated in neural differentiation. Thus, our study identified a dual-specificity histone demethylase that regulates neural differentiation through FGF4.展开更多
In order to investigate DNA methylation profiles of five pluripotency-related genes (Oct4, Sox2, Nanog, Rexl and Fgf4) during bovine maternal to zygotic transition (MZT) in both in vitro fertilized (IVF) and nuc...In order to investigate DNA methylation profiles of five pluripotency-related genes (Oct4, Sox2, Nanog, Rexl and Fgf4) during bovine maternal to zygotic transition (MZT) in both in vitro fertilized (IVF) and nuclear transfer (NT) embryos, sodium bisulfite sequencing method was used to detect DNA methylation levels, accompanied by the statistical analysis of embryo developmental rates. The results showed that Oct4, Nanog, Rexl and Fgf4 were respectively demethylated by 25.22% (P 〈 0.01), 3.84% (P 〉 0.05), 31.82% (P 〈 0.01) and 10% (P 〉 0.05) while Sox2 retained unmethylafion during MZT in IVF embryos. By contrast, Oct4 and Rexl respectively underwent demethylation by 23.04% (P 〈 0.01) and 6.02% (P 〉 0.05), and, reversely, Sox2, Nanog and Fgf4 respectively experienced remethylation by 0.84% (P 〉 0.05), 5.39% (P 〉 0.05) and 5.46% (P 〉 0.05) during MZT in NT embryos. Interestingly, the CpG 14 site of Sox2 was specifically methylated in both 8-cell and morula NT embryos. In addition, the development of blastocysts between IVF and NT embryos showed no significant difference. DNA methylation analysis showed that only Oct4 and Sox2 underwent the correct methylation reprogramming process, which may be responsible for the development of blastocysts of NT embryos to a certain extent. In conclusion, the five genes respectively experienced demethylation to different extents and incomplete DNA methylation reprogramming during bovine MZT in both IVF and NT embryos, suggesting that they may be used as indicators for bovine embryo developmental competence.展开更多
Objective:To evaluate the efficacy of ponatinib plus gossypol against colorectal cancer HCT-116 and Caco-2 cells.Methods:Cells were treated with ponatinib and/or gossypol at increasing concentrations to evaluate syner...Objective:To evaluate the efficacy of ponatinib plus gossypol against colorectal cancer HCT-116 and Caco-2 cells.Methods:Cells were treated with ponatinib and/or gossypol at increasing concentrations to evaluate synergistic drug interactions by combination index.Cell viability,FGF19/FGFR4,and apoptotic and autophagic cell death were studied.Results:Ponatinib(1.25-40μM)and gossypol(2.5-80μM)monotherapy inhibited HCT-116 and Caco-2 cell viability in a doseand time-dependent manner.The combination of ponatinib and gossypol at a ratio of 1 to 2 significantly decreased cell viability(P<0.05),with a>2-and>4-fold reduction in IC50,respectively,after 24 h and 48 h,as compared to the IC50 of ponatinib.Lower combined concentrations showed greater synergism(combination index<1)with a higher ponatinib dose reduction index.Moreover,ponatinib plus gossypol induced morphological changes in HCT-116and Caco-2 cells,increased beclin-1 and caspase-3,and decreased FGF19,FGFR4,Bcl-2 and p-Akt as compared to treatment with drugs alone.Conclusions:Gossypol enhances ponatinib's anticancer effects against colorectal cancer cells through antiproliferative,apoptotic,and autophagic mechanisms.This may open the way for the future use of ponatinib at lower doses with gossypol as a potentially safer targeted strategy for colorectal cancer treatment.展开更多
基金Supplementary information is linked to the online version of the paper on the Cell Research website.Acknowledgments We thank Anning Lin (The University of Chicago) for the critical reading of the paper, members in the Chen lab for technical help, the cell biology and molecular biology core facilities for confocal study and Q-PCR, and Shanghai Biochip Co Ltd. for microarray analysis. The H3K27me2 antibody was kindly provided by Li Tang (Fudan University) and Thomas Jenuwein (Research Institute of Molecular Pathology, The Vienna Biocenter). This work was supported by the National Basic Research Program of China (2007CB957900, 2006CB943902, 2007CB947101, 2008KR0695, 2009CB941100, 2005CB522704), the Chinese Academy of Sciences (KSCX2-YW-R-04), the National Natural Science Foundation of China (90919026, 30870538,30623003, 30721065, 30830034, 90919046), the Shanghai Pujiang Program (0757S11361), the Shanghai Key Project of Basic Science Research (06DJ14001, 06DZ22032, 08DJ1400501), and the Council of Shanghai Municipal Government for Science and Technology (088014199).
文摘Dimethylations of histone H3 lysine 9 and lysine 27 are important epigenetic marks associated with transcription repression. Here, we identified KIAA1718 (KDM7A) as a novel histone demethylase specific for these two repressing marks. Using mouse embryonic stem cells, we demonstrated that KIAA1718 expression increased at the early phase of neural differentiation. Knockdown of the gene blocked neural differentiation and the effect was rescued by the wild-type human gene, and not by a catalytically inactive mutant. In addition, overexpression of KIAA1718 accelerated neural differentiation. We provide the evidence that the pro-neural differentiation effect of KDM7A is mediated through direct transcriptional activation of FGF4, a signal molecule implicated in neural differentiation. Thus, our study identified a dual-specificity histone demethylase that regulates neural differentiation through FGF4.
基金supported by the Key Scientific and Technological Special Program for the Culture of Disease-resistance Transgenic Cattle Species(No.2008ZX08007-004),Government of China
文摘In order to investigate DNA methylation profiles of five pluripotency-related genes (Oct4, Sox2, Nanog, Rexl and Fgf4) during bovine maternal to zygotic transition (MZT) in both in vitro fertilized (IVF) and nuclear transfer (NT) embryos, sodium bisulfite sequencing method was used to detect DNA methylation levels, accompanied by the statistical analysis of embryo developmental rates. The results showed that Oct4, Nanog, Rexl and Fgf4 were respectively demethylated by 25.22% (P 〈 0.01), 3.84% (P 〉 0.05), 31.82% (P 〈 0.01) and 10% (P 〉 0.05) while Sox2 retained unmethylafion during MZT in IVF embryos. By contrast, Oct4 and Rexl respectively underwent demethylation by 23.04% (P 〈 0.01) and 6.02% (P 〉 0.05), and, reversely, Sox2, Nanog and Fgf4 respectively experienced remethylation by 0.84% (P 〉 0.05), 5.39% (P 〉 0.05) and 5.46% (P 〉 0.05) during MZT in NT embryos. Interestingly, the CpG 14 site of Sox2 was specifically methylated in both 8-cell and morula NT embryos. In addition, the development of blastocysts between IVF and NT embryos showed no significant difference. DNA methylation analysis showed that only Oct4 and Sox2 underwent the correct methylation reprogramming process, which may be responsible for the development of blastocysts of NT embryos to a certain extent. In conclusion, the five genes respectively experienced demethylation to different extents and incomplete DNA methylation reprogramming during bovine MZT in both IVF and NT embryos, suggesting that they may be used as indicators for bovine embryo developmental competence.
基金financial support from the Theodor Bilharz Research InstituteWarrak El-Hadar+1 种基金ImbabaGiza 12411,Egypt。
文摘Objective:To evaluate the efficacy of ponatinib plus gossypol against colorectal cancer HCT-116 and Caco-2 cells.Methods:Cells were treated with ponatinib and/or gossypol at increasing concentrations to evaluate synergistic drug interactions by combination index.Cell viability,FGF19/FGFR4,and apoptotic and autophagic cell death were studied.Results:Ponatinib(1.25-40μM)and gossypol(2.5-80μM)monotherapy inhibited HCT-116 and Caco-2 cell viability in a doseand time-dependent manner.The combination of ponatinib and gossypol at a ratio of 1 to 2 significantly decreased cell viability(P<0.05),with a>2-and>4-fold reduction in IC50,respectively,after 24 h and 48 h,as compared to the IC50 of ponatinib.Lower combined concentrations showed greater synergism(combination index<1)with a higher ponatinib dose reduction index.Moreover,ponatinib plus gossypol induced morphological changes in HCT-116and Caco-2 cells,increased beclin-1 and caspase-3,and decreased FGF19,FGFR4,Bcl-2 and p-Akt as compared to treatment with drugs alone.Conclusions:Gossypol enhances ponatinib's anticancer effects against colorectal cancer cells through antiproliferative,apoptotic,and autophagic mechanisms.This may open the way for the future use of ponatinib at lower doses with gossypol as a potentially safer targeted strategy for colorectal cancer treatment.