期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于SCG优化SSAE-FFNN的电能质量复合扰动深度特征提取与分类 被引量:5
1
作者 丁皓月 吕干云 +3 位作者 史明明 费骏韬 俞明 吴启宇 《电力工程技术》 北大核心 2024年第3期99-110,共12页
随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要... 随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要意义。为此,文中提出一种基于堆叠稀疏自编码器(stacked sparse auto encoder,SSAE)和前馈神经网络(feedforward neural network,FFNN)的电能质量复合扰动分类方法。首先,基于IEEE标准构建PQDs仿真模型。然后,建立基于SSAE-FFNN的PQDs分类模型,并引入缩放共轭梯度(scaled conjugate gradient,SCG)算法对模型进行优化,以提高梯度下降速度和网络训练效率。接着,为有效降低堆叠网络的重构损失同时提取出深度的低维特征,构建SSAE的逐层训练集及微调策略。最后,通过算例分析验证文中方法的分类效果、鲁棒性、泛化性和适用场景规模。结果表明,文中方法能够有效识别电能质量复合扰动,对含误差扰动和某地市电网的21组实测扰动录波数据也有较高的分类准确率。 展开更多
关键词 电能质量 复合扰动分类 堆叠稀疏自编码器(SSAE) 深度特征提取 缩放共轭梯度(SCG) 前馈神经网络(ffnn)
在线阅读 下载PDF
基于FFNN的垂直阵被动定位技术研究 被引量:1
2
作者 张巧力 刘福臣 《声学与电子工程》 2020年第1期32-36,共5页
以声压场采样协方差矩阵为特征,对基于单隐藏层的前馈神经网络(Feedforward Neural Network,FFNN)求解垂直阵水下声源测距问题,提出了新的采样协方差矩阵实向量化以满足网络输入的要求。文章利用Keras库搭建了单隐藏层的FFNN,使用SWell ... 以声压场采样协方差矩阵为特征,对基于单隐藏层的前馈神经网络(Feedforward Neural Network,FFNN)求解垂直阵水下声源测距问题,提出了新的采样协方差矩阵实向量化以满足网络输入的要求。文章利用Keras库搭建了单隐藏层的FFNN,使用SWell EX-96实验S5航次的垂直阵数据,比较了以传统匹配场处理(Matched Field Processing,MFP)为代表的模型驱动方法和以FFNN为代表的数据驱动方法的水下目标被动定位性能。结果表明,相同训练条件下,新的方案减少了特征长度,降低了模型的复杂度,但是没有影响网络定位性能。 展开更多
关键词 被动定位 垂直阵 MFP 数据驱动方法 ffnn
在线阅读 下载PDF
Illumination Invariant Face Recognition Using Fuzzy LDA and FFNN
3
作者 Behzad Bozorgtabar Hamed Azami Farzad Noorian 《Journal of Signal and Information Processing》 2012年第1期45-50,共6页
The most significant practical challenge for face recognition is perhaps variability in lighting intensity. In this paper, we developed a face recognition which is insensitive to large variation in illumination. Norma... The most significant practical challenge for face recognition is perhaps variability in lighting intensity. In this paper, we developed a face recognition which is insensitive to large variation in illumination. Normalization step including two steps, first we used Histogram truncation as a pre-processing step and then we implemented Homomorphic filter. The main idea is that, achieving illumination invariance causes to simplify feature extraction module and increases recognition rate. Then we utilized Fuzzy Linear Discriminant Analysis (FLDA) in feature extraction stage which showed a good discriminating ability compared to other methods while classification is performed using Feedforward Neural Network (FFNN). The experiments were performed on the ORL (Olivetti Research Laboratory) face image database and the results show the present method outweighs other techniques applied on the same database and reported in literature. 展开更多
关键词 FACE Recognition HISTOGRAM TRUNCATION Homomorphic Filter FUZZY LDA ffnn
在线阅读 下载PDF
Critical evaluation of feature importance assessment in FFNN-based models for predicting Kamlet-Taft parameters
4
作者 Yoshiyasu Takefuji 《Green Chemical Engineering》 2025年第3期289-290,共2页
Mohan et al.developed a feed-forward neural network(FFNN)model to predict Kamlet-Taft parameters using quantum chemically derived features,achieving notable predictive accuracy.However,this study raises concerns about... Mohan et al.developed a feed-forward neural network(FFNN)model to predict Kamlet-Taft parameters using quantum chemically derived features,achieving notable predictive accuracy.However,this study raises concerns about conflating prediction accuracy with feature importance accuracy,as high R^(2)and low root mean square error(RMSE)do not guarantee valid feature importance assessments.The reliance on SHapley Additive exPlanations(SHAP)for feature evaluation is problematic due to model-specific biases that could misrepresent true associations.A broader understanding of data distribution,statistical relationships,and significance testing through pvalues is essential to rectify this.This paper advocates for employing robust statistical methods,like Spearman's correlation,to effectively assess genuine associations and mitigate biases in feature importance analysis. 展开更多
关键词 Feature importance Machine learning ffnn SHAP Statistical significance Spearman's correlation
原文传递
神经网络及其在工程管理中的应用
5
作者 徐济仁 陈家松 《有线电视技术》 2004年第4期78-82,共5页
本文详细地介绍了神经网络的模型、结构、应用与最新发展等,对神经网络技术在工程管理方面的应用也作了详细的说明与分析。
关键词 神经网络 工程管理 企业管理 ffnn FBNN 智能化管理
在线阅读 下载PDF
一种基于深度信念网络的径流量预测方法 被引量:10
6
作者 钱立鹏 刘长征 +2 位作者 陈翠忠 宋亚萍 魏震 《石河子大学学报(自然科学版)》 CAS 北大核心 2021年第2期259-264,共6页
针对流域径流序列的非平稳性和随机性,本文研究将深度信念网络方法引入到日径流量的预测,对天山北部玛纳斯河6120天的实测数据进行训练、预测,并与粒子群优化的支持向量机、支持向量机和前馈神经网络3种数据驱动模型的日径流量预测结果... 针对流域径流序列的非平稳性和随机性,本文研究将深度信念网络方法引入到日径流量的预测,对天山北部玛纳斯河6120天的实测数据进行训练、预测,并与粒子群优化的支持向量机、支持向量机和前馈神经网络3种数据驱动模型的日径流量预测结果进行对比分析。结果表明:基于深度学习理论的DBN预测下判定系数R2比FFNN、SVM、PSOSVM分别提高11.15%、10.11%、0.29%,均方误差MSE分别降低6.63、5.58、0.43,尽管PSOSVM与DBN在R2和MSE上非常接近,但是在相同软硬件条件下DBN预测用时仅为PSOSVM的50%。因此,DBN的预测精度和适用性是优于PSOSVM、SVM和FFNN模型的,本文提出的深度信念网络方法可用于提高流域水文模型的日径流预测能力。 展开更多
关键词 日径流量预测 DBN模型 PSOSVM模型 SVM模型 ffnn模型 玛纳斯河流域
在线阅读 下载PDF
时变工况下电静压伺服机构性能退化监测方法研究 被引量:1
7
作者 马行健 贺青川 +2 位作者 刘慧 赵守军 潘骏 《液压与气动》 北大核心 2023年第5期17-25,共9页
针对缺乏时变工况下电静压伺服机构性能退化监测方法,在地面摇摆测试过程中难以预测性能退化程度,进而影响火箭健康状态评估准确性的问题,提出了一种利用人工神经网络进行电静压伺服机构性能退化监测的方法。通过对电静压伺服机构的系... 针对缺乏时变工况下电静压伺服机构性能退化监测方法,在地面摇摆测试过程中难以预测性能退化程度,进而影响火箭健康状态评估准确性的问题,提出了一种利用人工神经网络进行电静压伺服机构性能退化监测的方法。通过对电静压伺服机构的系统建模与性能退化机理分析,确定了性能退化表征参数;通过分析不同性能退化阶段与正常状态下的特征参量相对偏离程度的方法构建了健康因子;提出了基于可控参数的前馈神经网络进行健康因子监测的方法。利用地面摇摆实验平台进行了验证,结果表明:所构建的健康因子具有较强的性能退化程度表征能力;所提监测方法对解决时变工况下电静压伺服机构性能退化监测问题是有效的。 展开更多
关键词 电静压伺服机构(EHA) 时变工况 前馈神经网络(ffnn) 性能退化
在线阅读 下载PDF
燃煤循环流化床掺烧城市生活垃圾过程中酸性气体排放 被引量:28
8
作者 董长青 金保升 +3 位作者 仲兆平 兰计香 李锋 黄亚继 《中国电机工程学报》 EI CSCD 北大核心 2002年第3期32-37,共6页
在一燃煤循环流化床实验装置上进行了掺烧城市生活垃圾实验 ,主要研究了掺烧过程中酸性气体 (NO、N2 O、HCl和SO2 )的排放。实验结果显示 :加入城市生活垃圾 (MSW )时 ,HCl排放量增加 ,NO和SO2 的排放量减少 ,N2 O随掺烧比R(MSW /Coal)... 在一燃煤循环流化床实验装置上进行了掺烧城市生活垃圾实验 ,主要研究了掺烧过程中酸性气体 (NO、N2 O、HCl和SO2 )的排放。实验结果显示 :加入城市生活垃圾 (MSW )时 ,HCl排放量增加 ,NO和SO2 的排放量减少 ,N2 O随掺烧比R(MSW /Coal)增大先降低 ,随R进一步增大 ,N2 O排放浓度略有增加 ;当垃圾与煤掺烧比 (R)不变时 ,温度增加 ,NO排放量增加 ,N2 O排放减少 ,SO2 和HCl排放浓度基本不变。采用前向神经网络模型预测NO排放随混合燃料的变化 ,当隐层单元数为 9时 ,模拟值与实验值符合较好。 展开更多
关键词 城市生活垃圾过程 酸性气体排放 掺烧 燃煤循环流化床
在线阅读 下载PDF
神经网络和改进粒子群算法在地震预测中的应用 被引量:8
9
作者 苏义鑫 沈俊 +1 位作者 张丹红 胡孝芳 《计算机应用》 CSCD 北大核心 2011年第7期1793-1796,1807,共5页
提出了一种基于神经网络与改进粒子群算法的地震预测方法,该方法采用前向神经网络作为地震震级的预测模型,引入改进的粒子群算法对前向网络的连接权值进行修正。为了设计在全局搜索和局部搜索之间取得最佳平衡的惯性权重,基于粒子动态... 提出了一种基于神经网络与改进粒子群算法的地震预测方法,该方法采用前向神经网络作为地震震级的预测模型,引入改进的粒子群算法对前向网络的连接权值进行修正。为了设计在全局搜索和局部搜索之间取得最佳平衡的惯性权重,基于粒子动态变异思想对粒子群优化算法进行改进,提出了一种动态变异粒子群优化算法,并将其应用于地震震级预测神经网络模型优化。在仿真实验中,将所提出的方法与另外两个采用不同算法的前向网络预测方法进行了比较。结果表明所提出的优化算法收敛速度最快,所得模型的预测误差最小,泛化能力最强,对地震的中期预测有很好的参考作用。 展开更多
关键词 地震预测 前馈神经网络 粒子群优化算法 BP算法
在线阅读 下载PDF
Development of a Novel Feedforward Neural Network Model Based on Controllable Parameters for Predicting Effluent Total Nitrogen 被引量:5
10
作者 Zihao Zhao Zihao Wang +5 位作者 Jialuo Yuan Jun Ma Zheling He Yilan Xu Xiaojia Shen Liang Zhu 《Engineering》 SCIE EI 2021年第2期195-202,共8页
The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To a... The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs. 展开更多
关键词 Feedforward neural network(ffnn) Algorithms Controllable operation parameters Sequencing batch reactor(SBR) Total nitrogen(TN)
在线阅读 下载PDF
Detection Collision Flows in SDN Based 5G Using Machine Learning Algorithms 被引量:1
11
作者 Aqsa Aqdus Rashid Amin +3 位作者 Sadia Ramzan Sultan S.Alshamrani Abdullah Alshehri El-Sayed M.El-kenawy 《Computers, Materials & Continua》 SCIE EI 2023年第1期1413-1435,共23页
The rapid advancement of wireless communication is forming a hyper-connected 5G network in which billions of linked devices generate massive amounts of data.The traffic control and data forwarding functions are decoup... The rapid advancement of wireless communication is forming a hyper-connected 5G network in which billions of linked devices generate massive amounts of data.The traffic control and data forwarding functions are decoupled in software-defined networking(SDN)and allow the network to be programmable.Each switch in SDN keeps track of forwarding information in a flow table.The SDN switches must search the flow table for the flow rules that match the packets to handle the incoming packets.Due to the obvious vast quantity of data in data centres,the capacity of the flow table restricts the data plane’s forwarding capabilities.So,the SDN must handle traffic from across the whole network.The flow table depends on Ternary Content Addressable Memorable Memory(TCAM)for storing and a quick search of regulations;it is restricted in capacity owing to its elevated cost and energy consumption.Whenever the flow table is abused and overflowing,the usual regulations cannot be executed quickly.In this case,we consider lowrate flow table overflowing that causes collision flow rules to be installed and consumes excessive existing flow table capacity by delivering packets that don’t fit the flow table at a low rate.This study introduces machine learning techniques for detecting and categorizing low-rate collision flows table in SDN,using Feed ForwardNeuralNetwork(FFNN),K-Means,and Decision Tree(DT).We generate two network topologies,Fat Tree and Simple Tree Topologies,with the Mininet simulator and coupled to the OpenDayLight(ODL)controller.The efficiency and efficacy of the suggested algorithms are assessed using several assessment indicators such as success rate query,propagation delay,overall dropped packets,energy consumption,bandwidth usage,latency rate,and throughput.The findings showed that the suggested technique to tackle the flow table congestion problem minimizes the number of flows while retaining the statistical consistency of the 5G network.By putting the proposed flow method and checking whether a packet may move from point A to point B without breaking certain regulations,the evaluation tool examines every flow against a set of criteria.The FFNN with DT and K-means algorithms obtain accuracies of 96.29%and 97.51%,respectively,in the identification of collision flows,according to the experimental outcome when associated with existing methods from the literature. 展开更多
关键词 5G networks software-defined networking(SDN) OpenFlow load balancing machine learning(ML) feed forward neural network(ffnn) k-means and decision tree(DT)
在线阅读 下载PDF
Intrusion Detection System Through Deep Learning in Routing MANET Networks
12
作者 Zainab Ali Abbood DoguÇagdaşAtilla Çagatay Aydin 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期269-281,共13页
Deep learning(DL)is a subdivision of machine learning(ML)that employs numerous algorithms,each of which provides various explanations of the data it consumes;mobile ad-hoc networks(MANET)are growing in promi-nence.For... Deep learning(DL)is a subdivision of machine learning(ML)that employs numerous algorithms,each of which provides various explanations of the data it consumes;mobile ad-hoc networks(MANET)are growing in promi-nence.For reasons including node mobility,due to MANET’s potential to provide small-cost solutions for real-world contact challenges,decentralized management,and restricted bandwidth,MANETs are more vulnerable to security threats.When protecting MANETs from attack,encryption and authentication schemes have their limits.However,deep learning(DL)approaches in intrusion detection sys-tems(IDS)can adapt to the changing environment of MANETs and allow a sys-tem to make intrusion decisions while learning about its mobility in the environment.IDSs are a secondary defiance system for mobile ad-hoc networks vs.attacks since they monitor network traffic and report anything unusual.Recently,many scientists have employed deep neural networks(DNNs)to address intrusion detection concerns.This paper used MANET to recognize com-plex patterns by focusing on security standards through efficiency determination and identifying malicious nodes,and mitigating network attacks using the three algorithms presented Cascading Back Propagation Neural Network(CBPNN),Feedforward-Neural-Network(FNN),and Cascading-Back-Propagation-Neural-Network(CBPNN)(FFNN).In addition to Convolutional-Neural-Network(CNN),these primary forms of deep neural network(DNN)building designs are widely used to improve the performance of intrusion detection systems(IDS)and the use of IDS in conjunction with machine learning(ML).Further-more,machine learning(ML)techniques than their statistical and logical methods provide MANET network learning capabilities and encourage adaptation to differ-ent environments.Compared with another current model,The proposed model has better average receiving packet(ARP)and end-to-end(E2E)performance.The results have been obtained from CBP,FFNN and CNN 74%,82%and 85%,respectively,by the time(27,18,and 17 s). 展开更多
关键词 ARP CBPNN CNN DNN DL E2E ffnn IDS ML MANET security
在线阅读 下载PDF
Feed-Forward Neural Network Based Petroleum Wells Equipment Failure Prediction
13
作者 Agil Yolchuyev 《Engineering(科研)》 CAS 2023年第3期163-175,共13页
In the oil industry, the productivity of oil wells depends on the performance of the sub-surface equipment system. These systems often have problems stemming from sand, corrosion, internal pressure variation, or other... In the oil industry, the productivity of oil wells depends on the performance of the sub-surface equipment system. These systems often have problems stemming from sand, corrosion, internal pressure variation, or other factors. In order to ensure high equipment performance and avoid high-cost losses, it is essential to identify the source of possible failures in the early stage. However, this requires additional maintenance fees and human power. Moreover, the losses caused by these problems may lead to interruptions in the whole production process. In order to minimize maintenance costs, in this paper, we introduce a model for predicting equipment failure based on processing the historical data collected from multiple sensors. The state of the system is predicted by a Feed-Forward Neural Network (FFNN) with an SGD and Backpropagation algorithm is applied in the training process. Our model’s primary goal is to identify potential malfunctions at an early stage to ensure the production process’ continued high performance. We also evaluated the effectiveness of our model against other solutions currently available in the industry. The results of our study show that the FFNN can attain an accuracy score of 97% on the given dataset, which exceeds the performance of the models provided. 展开更多
关键词 PDM IOT Internet of Things Machine Learning Sensors Feed-Forward Neural Networks ffnn
在线阅读 下载PDF
Reaction order and neural network approaches for the simulation of COVID-19 spreading kinetic in India
14
作者 Sourav Chakraborty Arun Kumar Choudhary +1 位作者 Mausumi Sarma Manuj Kumar Hazarika 《Infectious Disease Modelling》 2020年第1期737-747,共11页
COVID-19 has created a pandemic situation in the whole world.Controlling of COVID-19 spreading rate in the social environment is a challenge for all individuals.In the present study,simulation of the lockdown effect o... COVID-19 has created a pandemic situation in the whole world.Controlling of COVID-19 spreading rate in the social environment is a challenge for all individuals.In the present study,simulation of the lockdown effect on the COVID-19 spreading rate in India and mapping of its recovery percentage(until May 2020)were investigated.Investigation of the lockdown impact dependent on first order reaction kinetics demonstrated higher effect of lockdown 1 on controlling the COVID-19 spreading rate when contrasted with lockdown 2 and 3.Although decreasing trend was followed for the reaction rate constant of different lockdown stages,the distinction between the lockdown 2 and 3 was minimal.Mathematical and feed forward neural network(FFNN)approaches were applied for the simulation of COVID-19 spreading rate.In case of mathematical approach,exponential model indicated adequate performance for the prediction of the spreading rate behavior.For the FFNN based modeling,1-5-1 was selected as the best architecture so as to predict adequate spreading rate for all the cases.The architecture also showed effective performance in order to forecast number of cases for next 14 days.The recovery percentage was modeled as a function of number of days with the assistance of polynomial fitting.Therefore,the investigation recommends proper social distancing and efficient management of corona virus in order to achieve higher decreasing trend of reaction rate constant and required recovery percentage for the stabilization of India. 展开更多
关键词 Lock down effect COVID-19 ffnn Recovery percentage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部