Safe trafficking of iron across the cell membrane is a delicate process that requires specific protein carriers. While many proteins involved in iron uptake by cells are known, only one cellular iron export protein ha...Safe trafficking of iron across the cell membrane is a delicate process that requires specific protein carriers. While many proteins involved in iron uptake by cells are known, only one cellular iron export protein has been identified in mammals: ferroportin(SLC40A1). Ceruloplasmin is a multicopper enzyme endowed with ferroxidase activity that is found as a soluble isoform in plasma or as a membrane-associated isoform in specific cell types. According to the currently accepted view, ferrous iron transported out of the cell by ferroportin would be safely oxidized by ceruloplasmin to facilitate loading on transferrin. Therefore, the ceruloplasminferroportin system represents the main pathway for cellular iron egress and it is responsible for physiological regulation of cellular iron levels. The most recent findings regarding the structural and functional features of ceruloplasmin and ferroportin and their relationship will be described in this review.展开更多
A major impedance to neuronal regeneration after peripheral nerve injury (PNI) is the activation of various programmed cell death mechanisms in the dorsal root ganglion. Ferroptosis is a form of programmed cell death ...A major impedance to neuronal regeneration after peripheral nerve injury (PNI) is the activation of various programmed cell death mechanisms in the dorsal root ganglion. Ferroptosis is a form of programmed cell death distinguished by imbalance in iron and thiol metabolism, leading to lethal lipid peroxidation. However, the molecular mechanisms of ferroptosis in the context of PNI and nerve regeneration remain unclear. Ferroportin (Fpn), the only known mammalian nonheme iron export protein, plays a pivotal part in inhibiting ferroptosis by maintaining intracellular iron homeostasis. Here, we explored in vitro and in vivo the involvement of Fpn in neuronal ferroptosis. We first delineated that reactive oxygen species at the injury site induces neuronal ferroptosis by increasing intracellular iron via accelerated UBA52-driven ubiquitination and degradation of Fpn, and stimulation of lipid peroxidation. Early administration of the potent arterial vasodilator, hydralazine (HYD), decreases the ubiquitination of Fpn after PNI by binding to UBA52, leading to suppression of neuronal cell death and significant acceleration of axon regeneration and motor function recovery. HYD targeting of ferroptosis is a promising strategy for clinical management of PNI.展开更多
文摘Safe trafficking of iron across the cell membrane is a delicate process that requires specific protein carriers. While many proteins involved in iron uptake by cells are known, only one cellular iron export protein has been identified in mammals: ferroportin(SLC40A1). Ceruloplasmin is a multicopper enzyme endowed with ferroxidase activity that is found as a soluble isoform in plasma or as a membrane-associated isoform in specific cell types. According to the currently accepted view, ferrous iron transported out of the cell by ferroportin would be safely oxidized by ceruloplasmin to facilitate loading on transferrin. Therefore, the ceruloplasminferroportin system represents the main pathway for cellular iron egress and it is responsible for physiological regulation of cellular iron levels. The most recent findings regarding the structural and functional features of ceruloplasmin and ferroportin and their relationship will be described in this review.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.:82122043,81972052,81902213,82201537,and 81730065)the China Postdoctoral Science Foundation(Grant Nos.:2021M693946 and 2019M653967).
文摘A major impedance to neuronal regeneration after peripheral nerve injury (PNI) is the activation of various programmed cell death mechanisms in the dorsal root ganglion. Ferroptosis is a form of programmed cell death distinguished by imbalance in iron and thiol metabolism, leading to lethal lipid peroxidation. However, the molecular mechanisms of ferroptosis in the context of PNI and nerve regeneration remain unclear. Ferroportin (Fpn), the only known mammalian nonheme iron export protein, plays a pivotal part in inhibiting ferroptosis by maintaining intracellular iron homeostasis. Here, we explored in vitro and in vivo the involvement of Fpn in neuronal ferroptosis. We first delineated that reactive oxygen species at the injury site induces neuronal ferroptosis by increasing intracellular iron via accelerated UBA52-driven ubiquitination and degradation of Fpn, and stimulation of lipid peroxidation. Early administration of the potent arterial vasodilator, hydralazine (HYD), decreases the ubiquitination of Fpn after PNI by binding to UBA52, leading to suppression of neuronal cell death and significant acceleration of axon regeneration and motor function recovery. HYD targeting of ferroptosis is a promising strategy for clinical management of PNI.
文摘铁是生命必需的微量元素,ferroportin(Fpn)是小肠吸收细胞铁释放的重要蛋白。新近发现肝脏分泌的抗菌多肽hepcidin具有调节肠铁吸收的重要作用,但目前尚缺少Fpn和hepcidin发生作用的实验依据。应用荧光共振能量转移技术(fluorescence resonance energy transfer,FRET)对hepcidin和Fpn之间的作用关系进行了深入研究。首先进行了hepcidin-CF P融合蛋白表达载体的构建及表达鉴定;然后对含YFP,Fpn-YFP基因动物细胞表达载体的构建、表达和FRET检测。实验结果证实hepcidin和Fpn之间存在直接的相互作用,并发现两种蛋白发生相互作用后hepcidin也在细胞质中有分布。为临床治疗铁代谢紊乱性疾病提供了新的治疗策略和重要理论依据。