Sorafenib(Sora)not only has an inhibitory effect on angiogenesis via indirectly inhibiting tumor growth through antiangiogenesis,but also can inactivate the glutathione peroxidase 4(GPX4)to induce ferroptosis.Nonethel...Sorafenib(Sora)not only has an inhibitory effect on angiogenesis via indirectly inhibiting tumor growth through antiangiogenesis,but also can inactivate the glutathione peroxidase 4(GPX4)to induce ferroptosis.Nonetheless,the therapeutic efficacy is hampered by a plethora of factors,including low bioavailability and tumor microenvironment(TME).Of particular note is the hypoxic and reductive TME,which acts as a significant impediment and poses formidable challenges to attain the most optimal treatment outcomes.Herein,we developed a novel therapeutic platform based on Sora-loaded mesoporous ferromanganese nanoparticles(PMFNs@Sora).PMFNs mimics both catalase and GPX activities.The self-sustained catalase activity enables continuous decomposition of hydrogen peroxide to generate oxygen,which alleviates hypoxia microenvironment.The GPX activity simultaneously amplifies the therapeutic efficacy of Sora.The as-synthesized PMFNs@Sora demonstrates significantly enhanced antitumor effect in vitro through apoptosis-ferroptosis,revealed by Western blot.Furthermore,PMFNs@Sora also showed effective tumor growth inhibition in vivo.This multifunctional nanoplatform offers a promising strategy for modulating the TME and enhancing cancer treatment in clinical application.展开更多
Weijia Guyot,located in the western Pacific Ocean,has become a research focus due to its abundant cobalt-rich ferromanganese(Fe-Mn)crusts.While most studies on Fe-Mn crusts on seamounts have focused on the exposed var...Weijia Guyot,located in the western Pacific Ocean,has become a research focus due to its abundant cobalt-rich ferromanganese(Fe-Mn)crusts.While most studies on Fe-Mn crusts on seamounts have focused on the exposed variety,less attention has been paid to potential buried crusts.This study presents a preliminary geochemical and chronological study of buried Fe-Mn crusts at Weijia Guyot.The findings suggest that these buried crusts began to form around 57.5 Ma and ceased growing at approximately 46.3 Ma.Following the formation of Weijia Guyot through volcanic eruption,it did not experience continuous and steady subsidence to its current depth.Instead,an exhumation process took place from deep to shallow depths between 46.3 and 11.6 Ma.This process brought the Fe-Mn crusts into shallow water environments,halting their growth.During this time,Weijia Guyot was located near the equatorial Pacific Ocean and was exposed to an extended period of phosphatization.This exposure led to a depletion of key metallogenic elements,such as Co,Ni and Cu,within the Fe-Mn crusts,while P2O5 and CaO levels increased significantly.Since the Middle Miocene,the crusts have been progressively buried by pelagic sediments.展开更多
To explore the geochemical characteristics and genesis of the elements in ferromanganese nodules from the Northwest Pacific,this study analyses the mineral composition,elemental content,occurrence phase and genetic me...To explore the geochemical characteristics and genesis of the elements in ferromanganese nodules from the Northwest Pacific,this study analyses the mineral composition,elemental content,occurrence phase and genetic mechanisms of samples by X-ray diffraction(XRD),inductively coupled plasma-optical emission spectrometry(ICP-OES),inductively coupled plasma-mass spectrometry(ICP-MS)and phase analysis methods.The results show that ferromanganese nodules are mainly hydrogenetic,and Mn/Fe content ratio ranges from 0.95 to 2.05.The major minerals are vernadite(δ-MnO_(2))and amorphous ferric oxyhydroxide(FeOOH),and the secondary minerals include todorokite,birnessite,quartz and plagioclase.Ferromanganese nodules contain high contents of Co(0.24%-0.42%),Cu(0.23%-0.73%),Ni(0.33%-0.86%)and rare earth elements(REEs,1192-1990μg/g),which have positive Ce and negative Y anomalies but no Eu anomaly.A cluster analysis suggests that the elements in ferromanganese nodules can be divided into three groups:hydrogenetic components,including Fe,Ti,Zr,P,Pb,Co,Ba,Sr,V and REEs;diagenetic components,including Mn,Ni,Mg,Zn and Cu;and detrital components,including Al,Na,K and Ca.According to chemical leaching,ferromanganese nodules can be divided into four phases:Na,Ca,Mg and Sr are mainly enriched in the carbonate phase;Mn,Co,Ni and Ba are mainly enriched in the Mn-oxide phase;Fe,P,Ti,Cu,Pb,V,Zn,Zr and REEs are mainly enriched in the Fe-oxide phase;and Al and K are mainly enriched in the residual phase.A combination of the two different methods reveal selective enrichment of metal elements from seawater by ferromanganese nodules,featuring multisource mineralization.Moreover,through ion exchange and adsorption,approximately 71.2%of REEs are enriched in the Fe-oxide phase,15.4%in the Mn-oxide phase and 12.4%in the residual phase,while REE contents in the carbonate phase are relatively low.In addition,under the oxic conditions of seawater,the oxidation of soluble Ce^(3+)to insoluble CeO_(2)together with Fe-Mn minerals results in Ce enrichment in ferromanganese nodules.This study provides a reference for the metallogenesis of ferromanganese nodules from the Northwest Pacific.展开更多
Preparation of electronic grade manganese sulfate from ferromanganese slag, including grinding, leaching and purification, was studied. The impurities, such as Fe3+, Al3+, Ca2+, Mg2+, heavy metal ions and Na+, K+, wer...Preparation of electronic grade manganese sulfate from ferromanganese slag, including grinding, leaching and purification, was studied. The impurities, such as Fe3+, Al3+, Ca2+, Mg2+, heavy metal ions and Na+, K+, were removed from leaching solution by neutralized-hydrolysis, fluorination precipitation, sulfuration precipitation and re-crystallization. Effects of pH of reaction, temperature and dosage of the different additives on removal rates of the metallic ions in leaching solution were investigated, and the suitable temperature, pH and the added amount of precipitating agent were obtained. The prepared manganese sulfate product, of which the mass fractions of Ca2+, Mg2+, Na+, K+ are all smaller than 0.005%, the mass fractions of Fe3+, Al3+ and heavy metal ions are smaller than 0.001%, and the mass fraction of Mn2+ is greater than 32%, can meet the demand of anode materials of lithium-ion batteries.展开更多
Low and medium carbon ferromanganese produced by oxygen decarburization process and electric silicothermic process was briefly introduced, and the quality of products by these two processes was analyzed. Results showe...Low and medium carbon ferromanganese produced by oxygen decarburization process and electric silicothermic process was briefly introduced, and the quality of products by these two processes was analyzed. Results showed that the total oxygen content in medium carbon ferromanganese by electric silicothermic process in China, which ranged from 0.039% to 0.171%, was between those of the common and refined products by oxygen decarburization process outside of China. The increments of total oxygen content in liquid steel were estimated when ferromanganese was added for the purpose of Mn element adjustment at the end of smelting. Refined low and medium carbon ferromanganese, which had low total oxygen content, was recommended for composition adjustment of clean steels during final stage of a heat. It is possible that the inclusions in the ferromanganese alloy greatly influenced the quality of clean steel indirectly by affecting the amount, size and composition of inclusions in steel.展开更多
In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crust...In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area at its 7th session. Since then, the consideration of the Regulations has been mainly focused on the size of areas to be allocated for exploration and exploitation of the crusts. This paper, based on the investigation data and the analysis of the distribution characteristics of the crusts, suggests a model for determining the size of areas for exploration and exploitation of the crusts, taking into account various factors such as production scale, crust thickness and grade, mineable area proportion, recovery efficiency, exploration venture, and so on. Through the modeling, the paper suggests that the exploration area (the area covered by each application for approval of a plan of work for exploration of cobalt-rich crusts) shall be 4 856 km2 and the exploitation area (the mine site area) shall be 1 214 km2, for 20 years of 1 million wet tonnes annual production.展开更多
Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, hig...Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, high-carbon ferromanganese powders were decarburized in a fluidized bed. When the temperature is respectively higher than 273, 1 226 and 1 312 K, the gas-solid decarburization reaction will occur between ferromanganese carbide on the surface of the high-carbon ferromanganese powders and different gas decarbonizers. Since metal manganese is easy to be oxidized by O2, CO2 or water vapor, the decarburization reaction will transfer into a solid-solid phase reaction of ferromanganese carbide and ferromanganese oxide, promoting external diffusion of carbon to achieve a further decarburization of high-carbon ferromanganese powders.展开更多
The power consumption is considered to be the most important factor affecting the production cost of fer romanganese alloy. Different parameters affecting the energy consumption for industrial production of high carbo...The power consumption is considered to be the most important factor affecting the production cost of fer romanganese alloy. Different parameters affecting the energy consumption for industrial production of high carbon ferromanganese HCFeMn were investigated in a closed submerged arc furnace. The analysis of industrial data revealed that the most energy consumed factors were the direct reduction by solid carbon, Boudouard reaction, metal and slag formation, and decomposition of fluxing materials (limestone and dolomite). To reduce the energy con- sumption and minimize the energy losses in the production process of HCFeMn, it was recommended to use Mn blend with minimum Mn to Fe ratio of 6 and lower SiO2 content or higher basicity. The added coke must be adjusted according to the material balance to prevent the over-coke and to minimize the highly endothermic "Boudouard reac tion". In addition, it was recommended to work at basic slags with the ratio of (CaO+MgO) to Si()2 equal to 1.0- 1.2 instead of much higher slag basicity. Furthermore, the mass losses had to be minimized through adjusting the handling and charging process and to take care of all metal produced.展开更多
The solid-phase decarburization of high-carbon ferromanganese powders (HCFPs) was investigated using calcium carbonate as the decarburizer by microwave heating and conventional heating methods to explore the differ-...The solid-phase decarburization of high-carbon ferromanganese powders (HCFPs) was investigated using calcium carbonate as the decarburizer by microwave heating and conventional heating methods to explore the differ-ences of microwave heating and conventional heating. Experimental results show that HCFPs containing calcium.car-bonate were heated up to 900, 1000, 1 100, and 1200 ℃ and held for 60 rain for decarburization by microwave heat-ing at decarburization ratios of 76.69%, 82.90%, 84.11%, and 85. 75%, respectively. These ratios are higher than the decarburization ratios used for conventional heating under the same experimental conditipns. The microwave heat- ing can significantly improve decarburization ratio. This indicates the microwave heating field features a non-thermal effect, which in turn, visibly enhances the carbon diffusion ability of HCFPs. It also improves the kinetic conditions of solid-phase decarburization.展开更多
Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean we...Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean were analyzed by using a high vacuum gas mass spectrum. The analytical results show that the noble gases in the Co-rich crusts have derived mainly from the ambient seawater, extraterrestrial grains such as interplanetary dust particles (IDPs) and wind-borne continental dust grains, and locally formation water in the submarine sediments, but different noble gases have different sources. He in the crusts derives predominantly from the extraterrestrial grains, with a negligible amount of radiogenic He from the eolian dust grains. Ar is sourced mainly from the dissolved air in the seawater and insignificantly from radiogenic Ar in the eolian continental dust grains or the formation water. Xe and Ne derive mainly from the seawater, with minor amounts of extraterrestrial Xe and Ne in the IDPs. Compared with the porous and outer layers, the compact layer has a relatively high 4He content and lower 3He/4He ratios, suggesting that marine phosphatization might have greatly modified the noble gas isotopic compositions of the crusts. Besides, the 3He/4He values of the basaltic substrates of the cobalt-rich crusts are very low and their R/R. ratios are mostly 〈0.1 R., which are similar to that of phosphorite substrates (0.087 R.), but much lower than that of fresh submarine MORB (8.75±14 Ra) or seamount basalts (3-43 Ra), implying that the basaltic substrates have suffered strong water/rock interaction and reacted with radiogenic ^4He and P-rich upwelling marine currents during phosphatization. The trace elements released in the basalt/seawater interaction might favor the growth of cobalt-rich crusts. The relatively low ^3He/^4He values in the seamount basalts may be used as an important exploration criterion for the cobalt-rich ferromanganese crusts.展开更多
Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the bas...Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the basis of comprehensive geochemical approach,the abundance and distribution of REY in the ferromanganese nodules from the South China Sea are analyzed.The results indicate that the REY contents in ferromanganese deposits show a clear geographic regularity.Total REY contents range from 69.1×10^-6 to 2 919.4×10^-6,with an average value of 1 459.5×10^-6.Especially,the enrichment rate of Ce content is high,accounting for almost 60% of the total REY.This REE enrichment is controlled mainly by the sorption of ferromanganese oxides and clay minerals in the nodules and crusts.Moreover,the total REY are higher in ferromanganese deposits of hydrogenous origin than of diagenetic origin.Finally,Light REE(LREE) and heavy REE(HREE) oxides of the ferromanganese deposits in the study area can be classified into four grades: non-enriched type,weakly enriched type,enriched type,and extremely enriched type.According to the classification criteria of rare earth resources,the Xisha and Zhongsha platform-central deep basin areas show a great potential for these rare earth metals.展开更多
In the equatorial western Pacific, iron-manganese oxyhydroxide crusts(Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sedim...In the equatorial western Pacific, iron-manganese oxyhydroxide crusts(Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sediments. To date, the Fe-Mn crusts have been considered to be almost exclusively of abiotic origin. However, it has recently been suggested that these crusts may be a result of biomineralization. Although the Fe-Mn crust textures in the equatorial western Pacific are similar to those constructed by bacteria and algae, and biomarkers also document the existence of bacteria and algae dispersed within the Fe-Mn crusts, the precipitation, accumulation and distribution of elements, such as Fe, Mn, Ni and Co in Fe-Mn crusts are not controlled by microbial activity. Bacteria and algae are only physically incorporated into the crusts when dead plankton settle on the ocean floor and are trapped on the crust surface. Geochemical evidence suggests a hydrogenous origin of Fe-Mn crusts in the equatorial western Pacific, thus verifying a process for Fe-Mn crusts that involves the precipitation of colloidal phases from seawater followed by extensive scavenging of dissolved trace metals into the mineral phase during crust formation.展开更多
In the present paper, iodine (I), iron (Fe), manganese (Mn), cobalt (Co), phosphorus (P) and calcium (Ca) contents in three ferromanganese crusts from the Pacific Ocean are measured by spectrophotometric m...In the present paper, iodine (I), iron (Fe), manganese (Mn), cobalt (Co), phosphorus (P) and calcium (Ca) contents in three ferromanganese crusts from the Pacific Ocean are measured by spectrophotometric method and inductively coupled plasma atomic emission spectrometers (ICP-AES) to investigate the contents and distribution of iodine in ferromanganese crusts. The results show that iodine contents in three crusts vary between 27.1 and 836 mg/kg, with an average of 172 mg/kg, and the profile of iodine in the three crusts all exhibits a two-stage distribution zone: a young non-phosphatized zone and an old phosphatized zone that is rich in I, P and Ca. The iodine content ratios of old to young zone in MP5D44, CXD62-1 and CXD08-1 are 2.3, 3.4 and 13.7, respectively. The boundary depths of two-stage zone in MP5D44, CXD62-1 and CXD08-1 locate at 4.0 cm, 2.5 cm and 3.75 cm, respectively, and the time of iodine mutation in three crusts ranges from 17-37 Ma derived from 129I dating and Co empirical formula, which is consistent with the times of Cenozoic phosphatization events. The present study shows that the intensity of phosphatization is the main responsible for the distribution pattern of iodine in the crusts on the basis of the correlation analysis. Consequently, iodine is a sensitive indicator for phosphatization.展开更多
Marine hydrogenous ferromanganese crust, an important metal resource in the future, has significant potential in various applications as a type of natural nano-structured material. By employing scanning electronic mic...Marine hydrogenous ferromanganese crust, an important metal resource in the future, has significant potential in various applications as a type of natural nano-structured material. By employing scanning electronic microscopy, nitrogen adsorption-desorption isotherm measurement, Xray fluorescence spectrometer and X-ray diffraction methods, the micro-structure, surface properties and chemical composition of several plate-like ferromanganese crusts sampled from the northwestern Pacific were investigated comprehensively. Although obvious differences were observed from different layers, the crust is a typical porous material with high specific surface area, unique pore structure and abundant transition elements. Furthermore, the performance of natural crust in desulfurization process was preliminarily tested in laboratory experiments. The suffur capacities of the crust are 13.1% and 18.1% at room temperature and 350 ℃, respectively. The crust can be used not only as a metal resource, but also as an environmental material.展开更多
Cobalt-rich ferromanganese is an important seafloor mineral and is abundantly present in the seamount crusts. Such crusts form potential hotspots for biogeochemical activity and microbial diversity, yet our understand...Cobalt-rich ferromanganese is an important seafloor mineral and is abundantly present in the seamount crusts. Such crusts form potential hotspots for biogeochemical activity and microbial diversity, yet our understanding of their microbial communities is lacking. In this study, a cultivation-independent approach was used to recover genomic information and derive ecological functions of the microbes in a sediment sample collected from the cobalt-rich ferromanganese crust of a seamount region in the central Pacific. A total of 78 distinct clones were obtained by fosmid library screening with a 16S rRNA based PCR method. Proteobacteria and MGI Thaumarch-aeota dominated the bacterial and archaeal 16S rRNA gene sequence results in the microbial community. Nine fosmid clones were sequenced and annotated. Numerous genes encoding proteins involved in metabolic functions and heavy metal resistance were identified, suggesting alternative metabolic pathways and stress responses that are essential for microbial survival in the cobalt-rich ferromanganese crust. In addition, genes that participate in the synthesis of organic acids and exoploymers were discovered. Reconstruction of the metabolic pathways revealed that the nitrogen cycle is an important biogeochemical process in the cobalt-rich ferromanganese crust. In addition, horizontal gene transfer (HGT) events have been observed, and most of them came from bacteria, with some occurring in archaea and plants. Clone W4-93a, belonging to MGI Thaumarch-aeota, contained a region of gene synteny. Comparative analyses suggested that a high frequency of HGT events as well as genomic divergence play important roles in the microbial adaption to the deep-sea environment.展开更多
The relation of Lp(the ratio P content in slag to P content in ferromanganese) and L,(the ratio Mn content in slag to Mn content in ferromanganese) with C content[C]in ferromanganese were tested by means of the equili...The relation of Lp(the ratio P content in slag to P content in ferromanganese) and L,(the ratio Mn content in slag to Mn content in ferromanganese) with C content[C]in ferromanganese were tested by means of the equilibrium experiments of P and Mn between ferromanganese and BaO-BaF-MnO slag system.The results show that there exists in ferromanganese an optimum C content[C]* corresponding to maximum Land minimum L> which is closely related to oxygen potential in the system and the activity of P in the alloy.The control limits of oxygen potential in dephosphorization of ferromanganese are then analyzed.The theoretical limits and measures to improve ferromanganese dephosphorization with BaO-based slag are studied comprehensively based on previous research.展开更多
Solid-phase decarburization of high-carbon ferromanganese powders (HCFPs) was conducted using calcium carbonate powders (CCPs) as a decarburizer by microwave heating. Solid-phase decarburization kinelSics was inve...Solid-phase decarburization of high-carbon ferromanganese powders (HCFPs) was conducted using calcium carbonate powders (CCPs) as a decarburizer by microwave heating. Solid-phase decarburization kinelSics was investi- gated by isothermal method. The results show that the HCFPs show excellent microwave absorption at a higher av- erage heating rate of 80 ℃/min, while CCPs exhibit poor microwave absorption at a lower heating rate of 5--20 ℃/min; the heating characteristics are in-between when HCFPs and CCPs are mixed. The average heating rates of the mix- ture are 32.14, 31.25, 31.43, and 30.77 ℃/rain when the mixture is heated up to 900, 1000, 1100, and 1200 ℃, respectively. The good microwave absorption property of the mixed material lays the foundation for the solid-phase decarburization of HCFPs containing CCPs. Solid-phase decarburization of HCFPs containing CCPs is a first-order reaction by microwave heating. Apparent activation energy of solid-phase decarburization is 55.07 kJ/mol, which is far less than that of ordinary carbon gasification reaction and that of solid-phase decarburization under the same de- carburization condition by conventional heating. It indicates that microwave heating not only produces thermal effect, but also has non-thermal effect.展开更多
In the present study, the analytical method for ^129iodine (^129I) in ferromanganese crusts is developed and ^129iodine/^127iodine (^129I/^127I) ratio in ferromanganese crusts is measured by the accelerator mass s...In the present study, the analytical method for ^129iodine (^129I) in ferromanganese crusts is developed and ^129iodine/^127iodine (^129I/^127I) ratio in ferromanganese crusts is measured by the accelerator mass spectrometry (AMS). The developed method is applied to analyze ^129I/^127I ratio in two ferromanganese crusts MP5D44 and CXD08-1 collected from the Mid-Pacific Ocean. The results show that ^129I/^127I ratio in MP5D44 and CXD08-1 crusts varies from 7×10^-14 to 1.27×10^-12, with the lowest value falling on the detection limit level of AMS reported by previous literatures. For the depth distribution of ^129I/^127I, it is found that both MP5D44 and CXD08-1 crusts have two growth generations, and the ^129I/^127I profiles in two generations all displayed an approximate exponential decay. According to the ^129I/^127I ratio, the generate age of bottom layer of MP5D44 and CXD08-1 was estimated to be 54.77 and 69.69 Ma, respectively.展开更多
We attempt to recover the paleocnvironments recorded in the accretion of a typical newtype hydrogenetic ferromanganese crust from the deep water areas of the East Philippine Sea. From detailed geochemical and U-series...We attempt to recover the paleocnvironments recorded in the accretion of a typical newtype hydrogenetic ferromanganese crust from the deep water areas of the East Philippine Sea. From detailed geochemical and U-series chronological studies, analysis of major and minor elements performed by X-ray fluorescence spectrometry (XRF) and inductively coupled plasma-mass spectrometer (ICPMS), three major accretion periods and corresponding paleocnvironments can be ascertained. The first period is a faster accretion period in the terminal Late Miocene to the Early Pliocene with looser structure and higher volcanic detritus content, corresponding to the active Antarctic bottom waters and depressed temperature from the intermediate Middle Miocene to the Early Pliocene. The second period is a pulse of pelagic clay deposition at the Early to Middle Pliocene, reflecting the shrinkage of the Antarctic bottom waters and the global temperature elevation of this period. The third period is a slower accretion period from the Middle Pliocene, which indicates the more violent activity of Antarctic bottom waters once again and more depressed temperature than the first period, facilitating the accretion of a more compact and pure ferromanganese zone. The paleoceanographic histories of these studied areas had not been made clear in previous research.展开更多
Near-bottom observation data from the manned deep submersible Jiaolong with high-precision underwater positioning data from Weijia Guyot,Magellan Seamounts in the Western Pacific Ocean are reported.Three substrate typ...Near-bottom observation data from the manned deep submersible Jiaolong with high-precision underwater positioning data from Weijia Guyot,Magellan Seamounts in the Western Pacific Ocean are reported.Three substrate types were identified:Sediment,ferromanganese crust,and ferromanganese crust with a thin cover of sediment.The ferromanganese crusts show clear zoning and their continuity is usually disturbed by sediments on areas of the mountainside with relatively gentle slope gradients.The identified substrate spatial distributions correspond to acoustic backscatter intensity data,with regions of high intensity always including crust development and regions of low intensity always having sediment.Therefore,acoustic backscatter intensity surveying appears useful in the delineation and evaluation of crust resources,although further more work is needed to develop a practicable methodology.展开更多
基金the financial support by National Natural Science Foundation of China(No.82171997)the Guangdong Basic and Applied Basic Research Fund Foundation(No.2023B1515120073)+2 种基金the Science and Technology Planning Project of Guangdong Province(No.2023B1212060013)Guangzhou Science and Technology Bureau(No.2023A03J0708)Shenzhen Science and Technology Program(Nos.JCYJ20230807111120043,JCYJ20220818102014028)。
文摘Sorafenib(Sora)not only has an inhibitory effect on angiogenesis via indirectly inhibiting tumor growth through antiangiogenesis,but also can inactivate the glutathione peroxidase 4(GPX4)to induce ferroptosis.Nonetheless,the therapeutic efficacy is hampered by a plethora of factors,including low bioavailability and tumor microenvironment(TME).Of particular note is the hypoxic and reductive TME,which acts as a significant impediment and poses formidable challenges to attain the most optimal treatment outcomes.Herein,we developed a novel therapeutic platform based on Sora-loaded mesoporous ferromanganese nanoparticles(PMFNs@Sora).PMFNs mimics both catalase and GPX activities.The self-sustained catalase activity enables continuous decomposition of hydrogen peroxide to generate oxygen,which alleviates hypoxia microenvironment.The GPX activity simultaneously amplifies the therapeutic efficacy of Sora.The as-synthesized PMFNs@Sora demonstrates significantly enhanced antitumor effect in vitro through apoptosis-ferroptosis,revealed by Western blot.Furthermore,PMFNs@Sora also showed effective tumor growth inhibition in vivo.This multifunctional nanoplatform offers a promising strategy for modulating the TME and enhancing cancer treatment in clinical application.
基金financial support from the National Natural Science Foundation of China(Grant No.U2244222,42576244,42072324,42442603)the Guangzhou Basic and Applied Basic Research Foundation(Grant No.202201011367,202201011487).
文摘Weijia Guyot,located in the western Pacific Ocean,has become a research focus due to its abundant cobalt-rich ferromanganese(Fe-Mn)crusts.While most studies on Fe-Mn crusts on seamounts have focused on the exposed variety,less attention has been paid to potential buried crusts.This study presents a preliminary geochemical and chronological study of buried Fe-Mn crusts at Weijia Guyot.The findings suggest that these buried crusts began to form around 57.5 Ma and ceased growing at approximately 46.3 Ma.Following the formation of Weijia Guyot through volcanic eruption,it did not experience continuous and steady subsidence to its current depth.Instead,an exhumation process took place from deep to shallow depths between 46.3 and 11.6 Ma.This process brought the Fe-Mn crusts into shallow water environments,halting their growth.During this time,Weijia Guyot was located near the equatorial Pacific Ocean and was exposed to an extended period of phosphatization.This exposure led to a depletion of key metallogenic elements,such as Co,Ni and Cu,within the Fe-Mn crusts,while P2O5 and CaO levels increased significantly.Since the Middle Miocene,the crusts have been progressively buried by pelagic sediments.
基金The Fund of Laoshan Laboratory under contract No.LSKJ202203602the National key R&D Program of China under contract No.2022YFC2803600the Taishan Scholarship from Shandong Province.
文摘To explore the geochemical characteristics and genesis of the elements in ferromanganese nodules from the Northwest Pacific,this study analyses the mineral composition,elemental content,occurrence phase and genetic mechanisms of samples by X-ray diffraction(XRD),inductively coupled plasma-optical emission spectrometry(ICP-OES),inductively coupled plasma-mass spectrometry(ICP-MS)and phase analysis methods.The results show that ferromanganese nodules are mainly hydrogenetic,and Mn/Fe content ratio ranges from 0.95 to 2.05.The major minerals are vernadite(δ-MnO_(2))and amorphous ferric oxyhydroxide(FeOOH),and the secondary minerals include todorokite,birnessite,quartz and plagioclase.Ferromanganese nodules contain high contents of Co(0.24%-0.42%),Cu(0.23%-0.73%),Ni(0.33%-0.86%)and rare earth elements(REEs,1192-1990μg/g),which have positive Ce and negative Y anomalies but no Eu anomaly.A cluster analysis suggests that the elements in ferromanganese nodules can be divided into three groups:hydrogenetic components,including Fe,Ti,Zr,P,Pb,Co,Ba,Sr,V and REEs;diagenetic components,including Mn,Ni,Mg,Zn and Cu;and detrital components,including Al,Na,K and Ca.According to chemical leaching,ferromanganese nodules can be divided into four phases:Na,Ca,Mg and Sr are mainly enriched in the carbonate phase;Mn,Co,Ni and Ba are mainly enriched in the Mn-oxide phase;Fe,P,Ti,Cu,Pb,V,Zn,Zr and REEs are mainly enriched in the Fe-oxide phase;and Al and K are mainly enriched in the residual phase.A combination of the two different methods reveal selective enrichment of metal elements from seawater by ferromanganese nodules,featuring multisource mineralization.Moreover,through ion exchange and adsorption,approximately 71.2%of REEs are enriched in the Fe-oxide phase,15.4%in the Mn-oxide phase and 12.4%in the residual phase,while REE contents in the carbonate phase are relatively low.In addition,under the oxic conditions of seawater,the oxidation of soluble Ce^(3+)to insoluble CeO_(2)together with Fe-Mn minerals results in Ce enrichment in ferromanganese nodules.This study provides a reference for the metallogenesis of ferromanganese nodules from the Northwest Pacific.
基金Project(2013ZX0754-001)supported by China National Critical Project for Science and Technology on Water Pollution Prevention and Control
文摘Preparation of electronic grade manganese sulfate from ferromanganese slag, including grinding, leaching and purification, was studied. The impurities, such as Fe3+, Al3+, Ca2+, Mg2+, heavy metal ions and Na+, K+, were removed from leaching solution by neutralized-hydrolysis, fluorination precipitation, sulfuration precipitation and re-crystallization. Effects of pH of reaction, temperature and dosage of the different additives on removal rates of the metallic ions in leaching solution were investigated, and the suitable temperature, pH and the added amount of precipitating agent were obtained. The prepared manganese sulfate product, of which the mass fractions of Ca2+, Mg2+, Na+, K+ are all smaller than 0.005%, the mass fractions of Fe3+, Al3+ and heavy metal ions are smaller than 0.001%, and the mass fraction of Mn2+ is greater than 32%, can meet the demand of anode materials of lithium-ion batteries.
基金Item Sponsored by National Natural Science Foundation of China(51274030)
文摘Low and medium carbon ferromanganese produced by oxygen decarburization process and electric silicothermic process was briefly introduced, and the quality of products by these two processes was analyzed. Results showed that the total oxygen content in medium carbon ferromanganese by electric silicothermic process in China, which ranged from 0.039% to 0.171%, was between those of the common and refined products by oxygen decarburization process outside of China. The increments of total oxygen content in liquid steel were estimated when ferromanganese was added for the purpose of Mn element adjustment at the end of smelting. Refined low and medium carbon ferromanganese, which had low total oxygen content, was recommended for composition adjustment of clean steels during final stage of a heat. It is possible that the inclusions in the ferromanganese alloy greatly influenced the quality of clean steel indirectly by affecting the amount, size and composition of inclusions in steel.
基金China International Seabed Area R & D Program under contract No.DYXM-115-01-1
文摘In 2001, the International Seabed Authority (ISBA) initiated the consideration relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area at its 7th session. Since then, the consideration of the Regulations has been mainly focused on the size of areas to be allocated for exploration and exploitation of the crusts. This paper, based on the investigation data and the analysis of the distribution characteristics of the crusts, suggests a model for determining the size of areas for exploration and exploitation of the crusts, taking into account various factors such as production scale, crust thickness and grade, mineable area proportion, recovery efficiency, exploration venture, and so on. Through the modeling, the paper suggests that the exploration area (the area covered by each application for approval of a plan of work for exploration of cobalt-rich crusts) shall be 4 856 km2 and the exploitation area (the mine site area) shall be 1 214 km2, for 20 years of 1 million wet tonnes annual production.
基金Item Sponsored by National Natural Science Foundation of China and Baosteel Group Corporation of China(50974149)
文摘Thermodynamic conditions of reactions between high-carbon ferromanganese powders and gas decarbonizers like O2, CO2 and water vapor were studied by thermodynamic calculation. In O2, CO2 and water vapor atmosphere, high-carbon ferromanganese powders were decarburized in a fluidized bed. When the temperature is respectively higher than 273, 1 226 and 1 312 K, the gas-solid decarburization reaction will occur between ferromanganese carbide on the surface of the high-carbon ferromanganese powders and different gas decarbonizers. Since metal manganese is easy to be oxidized by O2, CO2 or water vapor, the decarburization reaction will transfer into a solid-solid phase reaction of ferromanganese carbide and ferromanganese oxide, promoting external diffusion of carbon to achieve a further decarburization of high-carbon ferromanganese powders.
基金the Science and Technological Development Fund (STDF) due to their financial support
文摘The power consumption is considered to be the most important factor affecting the production cost of fer romanganese alloy. Different parameters affecting the energy consumption for industrial production of high carbon ferromanganese HCFeMn were investigated in a closed submerged arc furnace. The analysis of industrial data revealed that the most energy consumed factors were the direct reduction by solid carbon, Boudouard reaction, metal and slag formation, and decomposition of fluxing materials (limestone and dolomite). To reduce the energy con- sumption and minimize the energy losses in the production process of HCFeMn, it was recommended to use Mn blend with minimum Mn to Fe ratio of 6 and lower SiO2 content or higher basicity. The added coke must be adjusted according to the material balance to prevent the over-coke and to minimize the highly endothermic "Boudouard reac tion". In addition, it was recommended to work at basic slags with the ratio of (CaO+MgO) to Si()2 equal to 1.0- 1.2 instead of much higher slag basicity. Furthermore, the mass losses had to be minimized through adjusting the handling and charging process and to take care of all metal produced.
基金Item Sponsored by National Natural Science Foundation of China and Baosteel Group Corporation of China(50974149)
文摘The solid-phase decarburization of high-carbon ferromanganese powders (HCFPs) was investigated using calcium carbonate as the decarburizer by microwave heating and conventional heating methods to explore the differ-ences of microwave heating and conventional heating. Experimental results show that HCFPs containing calcium.car-bonate were heated up to 900, 1000, 1 100, and 1200 ℃ and held for 60 rain for decarburization by microwave heat-ing at decarburization ratios of 76.69%, 82.90%, 84.11%, and 85. 75%, respectively. These ratios are higher than the decarburization ratios used for conventional heating under the same experimental conditipns. The microwave heat- ing can significantly improve decarburization ratio. This indicates the microwave heating field features a non-thermal effect, which in turn, visibly enhances the carbon diffusion ability of HCFPs. It also improves the kinetic conditions of solid-phase decarburization.
文摘Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean were analyzed by using a high vacuum gas mass spectrum. The analytical results show that the noble gases in the Co-rich crusts have derived mainly from the ambient seawater, extraterrestrial grains such as interplanetary dust particles (IDPs) and wind-borne continental dust grains, and locally formation water in the submarine sediments, but different noble gases have different sources. He in the crusts derives predominantly from the extraterrestrial grains, with a negligible amount of radiogenic He from the eolian dust grains. Ar is sourced mainly from the dissolved air in the seawater and insignificantly from radiogenic Ar in the eolian continental dust grains or the formation water. Xe and Ne derive mainly from the seawater, with minor amounts of extraterrestrial Xe and Ne in the IDPs. Compared with the porous and outer layers, the compact layer has a relatively high 4He content and lower 3He/4He ratios, suggesting that marine phosphatization might have greatly modified the noble gas isotopic compositions of the crusts. Besides, the 3He/4He values of the basaltic substrates of the cobalt-rich crusts are very low and their R/R. ratios are mostly 〈0.1 R., which are similar to that of phosphorite substrates (0.087 R.), but much lower than that of fresh submarine MORB (8.75±14 Ra) or seamount basalts (3-43 Ra), implying that the basaltic substrates have suffered strong water/rock interaction and reacted with radiogenic ^4He and P-rich upwelling marine currents during phosphatization. The trace elements released in the basalt/seawater interaction might favor the growth of cobalt-rich crusts. The relatively low ^3He/^4He values in the seamount basalts may be used as an important exploration criterion for the cobalt-rich ferromanganese crusts.
基金The National Natural Science Foundation of China under contract Nos 41376057,41306047,41676056the Spanish project SUBVENT under contract No.CGL2012-39524-C02
文摘Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the basis of comprehensive geochemical approach,the abundance and distribution of REY in the ferromanganese nodules from the South China Sea are analyzed.The results indicate that the REY contents in ferromanganese deposits show a clear geographic regularity.Total REY contents range from 69.1×10^-6 to 2 919.4×10^-6,with an average value of 1 459.5×10^-6.Especially,the enrichment rate of Ce content is high,accounting for almost 60% of the total REY.This REE enrichment is controlled mainly by the sorption of ferromanganese oxides and clay minerals in the nodules and crusts.Moreover,the total REY are higher in ferromanganese deposits of hydrogenous origin than of diagenetic origin.Finally,Light REE(LREE) and heavy REE(HREE) oxides of the ferromanganese deposits in the study area can be classified into four grades: non-enriched type,weakly enriched type,enriched type,and extremely enriched type.According to the classification criteria of rare earth resources,the Xisha and Zhongsha platform-central deep basin areas show a great potential for these rare earth metals.
基金supported by the National Natural Science Foundation of China (Grant No.41273060)
文摘In the equatorial western Pacific, iron-manganese oxyhydroxide crusts(Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sediments. To date, the Fe-Mn crusts have been considered to be almost exclusively of abiotic origin. However, it has recently been suggested that these crusts may be a result of biomineralization. Although the Fe-Mn crust textures in the equatorial western Pacific are similar to those constructed by bacteria and algae, and biomarkers also document the existence of bacteria and algae dispersed within the Fe-Mn crusts, the precipitation, accumulation and distribution of elements, such as Fe, Mn, Ni and Co in Fe-Mn crusts are not controlled by microbial activity. Bacteria and algae are only physically incorporated into the crusts when dead plankton settle on the ocean floor and are trapped on the crust surface. Geochemical evidence suggests a hydrogenous origin of Fe-Mn crusts in the equatorial western Pacific, thus verifying a process for Fe-Mn crusts that involves the precipitation of colloidal phases from seawater followed by extensive scavenging of dissolved trace metals into the mineral phase during crust formation.
文摘In the present paper, iodine (I), iron (Fe), manganese (Mn), cobalt (Co), phosphorus (P) and calcium (Ca) contents in three ferromanganese crusts from the Pacific Ocean are measured by spectrophotometric method and inductively coupled plasma atomic emission spectrometers (ICP-AES) to investigate the contents and distribution of iodine in ferromanganese crusts. The results show that iodine contents in three crusts vary between 27.1 and 836 mg/kg, with an average of 172 mg/kg, and the profile of iodine in the three crusts all exhibits a two-stage distribution zone: a young non-phosphatized zone and an old phosphatized zone that is rich in I, P and Ca. The iodine content ratios of old to young zone in MP5D44, CXD62-1 and CXD08-1 are 2.3, 3.4 and 13.7, respectively. The boundary depths of two-stage zone in MP5D44, CXD62-1 and CXD08-1 locate at 4.0 cm, 2.5 cm and 3.75 cm, respectively, and the time of iodine mutation in three crusts ranges from 17-37 Ma derived from 129I dating and Co empirical formula, which is consistent with the times of Cenozoic phosphatization events. The present study shows that the intensity of phosphatization is the main responsible for the distribution pattern of iodine in the crusts on the basis of the correlation analysis. Consequently, iodine is a sensitive indicator for phosphatization.
基金supported by the National Natural Science Foundation of China(Grant No.40373024)the China Association of Research for 0ceanic Mineral Resources(Grant No.DY105-01-04-6)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20050284043).
文摘Marine hydrogenous ferromanganese crust, an important metal resource in the future, has significant potential in various applications as a type of natural nano-structured material. By employing scanning electronic microscopy, nitrogen adsorption-desorption isotherm measurement, Xray fluorescence spectrometer and X-ray diffraction methods, the micro-structure, surface properties and chemical composition of several plate-like ferromanganese crusts sampled from the northwestern Pacific were investigated comprehensively. Although obvious differences were observed from different layers, the crust is a typical porous material with high specific surface area, unique pore structure and abundant transition elements. Furthermore, the performance of natural crust in desulfurization process was preliminarily tested in laboratory experiments. The suffur capacities of the crust are 13.1% and 18.1% at room temperature and 350 ℃, respectively. The crust can be used not only as a metal resource, but also as an environmental material.
基金China Ocean Mineral Resources R&D Association COMRA Special Foundation under contract Nos DY125-15-R-03 and DY125-13-E-01the National Natural Science Foundation of China under contract No.41276173+1 种基金the Zhejiang Provincial Natural Science Foundation of China under contract No.LQ13D060002the Scientific Research Fund of the Second Institute of Oceanography,SOA under contract No.JT1305
文摘Cobalt-rich ferromanganese is an important seafloor mineral and is abundantly present in the seamount crusts. Such crusts form potential hotspots for biogeochemical activity and microbial diversity, yet our understanding of their microbial communities is lacking. In this study, a cultivation-independent approach was used to recover genomic information and derive ecological functions of the microbes in a sediment sample collected from the cobalt-rich ferromanganese crust of a seamount region in the central Pacific. A total of 78 distinct clones were obtained by fosmid library screening with a 16S rRNA based PCR method. Proteobacteria and MGI Thaumarch-aeota dominated the bacterial and archaeal 16S rRNA gene sequence results in the microbial community. Nine fosmid clones were sequenced and annotated. Numerous genes encoding proteins involved in metabolic functions and heavy metal resistance were identified, suggesting alternative metabolic pathways and stress responses that are essential for microbial survival in the cobalt-rich ferromanganese crust. In addition, genes that participate in the synthesis of organic acids and exoploymers were discovered. Reconstruction of the metabolic pathways revealed that the nitrogen cycle is an important biogeochemical process in the cobalt-rich ferromanganese crust. In addition, horizontal gene transfer (HGT) events have been observed, and most of them came from bacteria, with some occurring in archaea and plants. Clone W4-93a, belonging to MGI Thaumarch-aeota, contained a region of gene synteny. Comparative analyses suggested that a high frequency of HGT events as well as genomic divergence play important roles in the microbial adaption to the deep-sea environment.
基金This project is sponsored by the National Foundation of Natural Science of China
文摘The relation of Lp(the ratio P content in slag to P content in ferromanganese) and L,(the ratio Mn content in slag to Mn content in ferromanganese) with C content[C]in ferromanganese were tested by means of the equilibrium experiments of P and Mn between ferromanganese and BaO-BaF-MnO slag system.The results show that there exists in ferromanganese an optimum C content[C]* corresponding to maximum Land minimum L> which is closely related to oxygen potential in the system and the activity of P in the alloy.The control limits of oxygen potential in dephosphorization of ferromanganese are then analyzed.The theoretical limits and measures to improve ferromanganese dephosphorization with BaO-based slag are studied comprehensively based on previous research.
基金Item Sponsored by National Natural Science Foundation of China and Baosteel Group Corporation(50974149)
文摘Solid-phase decarburization of high-carbon ferromanganese powders (HCFPs) was conducted using calcium carbonate powders (CCPs) as a decarburizer by microwave heating. Solid-phase decarburization kinelSics was investi- gated by isothermal method. The results show that the HCFPs show excellent microwave absorption at a higher av- erage heating rate of 80 ℃/min, while CCPs exhibit poor microwave absorption at a lower heating rate of 5--20 ℃/min; the heating characteristics are in-between when HCFPs and CCPs are mixed. The average heating rates of the mix- ture are 32.14, 31.25, 31.43, and 30.77 ℃/rain when the mixture is heated up to 900, 1000, 1100, and 1200 ℃, respectively. The good microwave absorption property of the mixed material lays the foundation for the solid-phase decarburization of HCFPs containing CCPs. Solid-phase decarburization of HCFPs containing CCPs is a first-order reaction by microwave heating. Apparent activation energy of solid-phase decarburization is 55.07 kJ/mol, which is far less than that of ordinary carbon gasification reaction and that of solid-phase decarburization under the same de- carburization condition by conventional heating. It indicates that microwave heating not only produces thermal effect, but also has non-thermal effect.
基金The National Natural Science Foundation of China under contract No.41073044
文摘In the present study, the analytical method for ^129iodine (^129I) in ferromanganese crusts is developed and ^129iodine/^127iodine (^129I/^127I) ratio in ferromanganese crusts is measured by the accelerator mass spectrometry (AMS). The developed method is applied to analyze ^129I/^127I ratio in two ferromanganese crusts MP5D44 and CXD08-1 collected from the Mid-Pacific Ocean. The results show that ^129I/^127I ratio in MP5D44 and CXD08-1 crusts varies from 7×10^-14 to 1.27×10^-12, with the lowest value falling on the detection limit level of AMS reported by previous literatures. For the depth distribution of ^129I/^127I, it is found that both MP5D44 and CXD08-1 crusts have two growth generations, and the ^129I/^127I profiles in two generations all displayed an approximate exponential decay. According to the ^129I/^127I ratio, the generate age of bottom layer of MP5D44 and CXD08-1 was estimated to be 54.77 and 69.69 Ma, respectively.
基金This paperis supported bythe Pilot Project of the Knowledge InnovationProgramof Chinese Academy of Sciences (No . KZCX3-SW-223) theNational Natural Science Foundation of China ( Nos . 40506016 and40576032) .
文摘We attempt to recover the paleocnvironments recorded in the accretion of a typical newtype hydrogenetic ferromanganese crust from the deep water areas of the East Philippine Sea. From detailed geochemical and U-series chronological studies, analysis of major and minor elements performed by X-ray fluorescence spectrometry (XRF) and inductively coupled plasma-mass spectrometer (ICPMS), three major accretion periods and corresponding paleocnvironments can be ascertained. The first period is a faster accretion period in the terminal Late Miocene to the Early Pliocene with looser structure and higher volcanic detritus content, corresponding to the active Antarctic bottom waters and depressed temperature from the intermediate Middle Miocene to the Early Pliocene. The second period is a pulse of pelagic clay deposition at the Early to Middle Pliocene, reflecting the shrinkage of the Antarctic bottom waters and the global temperature elevation of this period. The third period is a slower accretion period from the Middle Pliocene, which indicates the more violent activity of Antarctic bottom waters once again and more depressed temperature than the first period, facilitating the accretion of a more compact and pure ferromanganese zone. The paleoceanographic histories of these studied areas had not been made clear in previous research.
基金This studywas funded by the Resource and Environment COMRA Projects (DY135-C1-1-02,DY135-C1-1-01)the China Geological Survey(DD20191009).
文摘Near-bottom observation data from the manned deep submersible Jiaolong with high-precision underwater positioning data from Weijia Guyot,Magellan Seamounts in the Western Pacific Ocean are reported.Three substrate types were identified:Sediment,ferromanganese crust,and ferromanganese crust with a thin cover of sediment.The ferromanganese crusts show clear zoning and their continuity is usually disturbed by sediments on areas of the mountainside with relatively gentle slope gradients.The identified substrate spatial distributions correspond to acoustic backscatter intensity data,with regions of high intensity always including crust development and regions of low intensity always having sediment.Therefore,acoustic backscatter intensity surveying appears useful in the delineation and evaluation of crust resources,although further more work is needed to develop a practicable methodology.