Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.A...Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.Among these materials,fully compensated ferrimagnets are particularly promising due to their unique characteristics such as the magneto-optical efect,completely spin-polarized currents,and the anomalous Hall efect.We performed a structural search on 2D unconventional stoichiometric Cr-I crystals using a global optimization algorithm.The most stable CrI-P21/m monolayer is a fully compensated ferrimagnetic semiconductor with a band gap of 1.57 eV and a high magnetic transition temperature of 592 K.The spontaneous spin splitting in CrI-P21/m originates from the inequivalent local coordination environments of Cr^(1)and Cr^(2)ions,yielding a mismatch in their 3d orbitals splitting.Notably,carrier doping at a concentration of 0.01 electrons or holes per atom enables reversible spin polarization,generating a fully spin-polarized current in CrI-P21/m.This performance makes it a highly promising candidate for spintronic devices.Our fndings not only provide a structural paradigm for discovering fully compensated ferrimagnets but also open a new avenue for designing zero-moment magnetic materials with intrinsic spin splitting.展开更多
3d transition metal chalcogenides have attracted much attention due to their unique magnetic properties.Although various Cr,V,and Fe-based chalcogenides have been fabricated recently,the limited Curie temperature(T_C)...3d transition metal chalcogenides have attracted much attention due to their unique magnetic properties.Although various Cr,V,and Fe-based chalcogenides have been fabricated recently,the limited Curie temperature(T_C)still hinders their practical application.Based on the structural and magnetic advantages of MFe_(2)O_(4)and Fe_(3)Se_(4),we developed a one-pot solution synthesis method for the fabrication of NiFe_(2)Se_(4)nanostructures with structural continuity,to facilitate the investigation of their magnetic properties.Notably,the morphology of Ni Fe_(2)Se_(4)can be controlled from nano-rods to nano-platelets by controlling the growth direction.The coercivity(H_(C))of NiFe_(2)Se_(4)with nano-cactus structure exhibits a maximum of 12.77kOe at 5 K.The coercivity of ferrimagnetic NiFe_(2)Se_(4)nano-platelets can be further adjusted to 1.52 kOe at room temperature.These results show that the magnetic properties of NiFe_(2)Se_(4)can be significantly modified by controlling their morphologies.We also extend the method to the synthesis of Co Fe_(2)Se_(4)nano-cactus with an ultrahigh coercivity of 17.85 k Oe at 5 K.Obviously,the synthesis strategy and their excellent magnetic properties of MFe_(2)Se_(4)have sparked interest in ternary transition metal selenides as potential hard magnetic materials.展开更多
Cubic Mn_(2)Ru_(x)Ga Heusler compound is a typical example of compensated ferrimagnet with attractive potential for high-density,ultrafast,and low-power spintronic applications.In the form of epitaxial thin films,Mn_(...Cubic Mn_(2)Ru_(x)Ga Heusler compound is a typical example of compensated ferrimagnet with attractive potential for high-density,ultrafast,and low-power spintronic applications.In the form of epitaxial thin films,Mn_(2)Ru_(x)Ga exhibits high spin polarization and high tunability of compensation temperature by freely changing the Ru content x in a broad range(0.3<x<1.0).Herein Mn-Ru-Ga-based polycrystalline bulk buttons prepared by arc melting are systematically studied and it is found that in equilibrium bulk form,the cubic structure is unstable when x<0.75.To overcome this limitation,Mn-Ru-Ga is alloyed with a fourth element V.By adjusting the content of V in the By adjusting the content of V in the Mn_(2)Ru_(0.75)V_(y)Ga and Mn_(2.25-y)Ru_(0.75)V_(y)Ga quaternary systems the magnetic compensation temperature is tuned.Compensation is achieved near 300 K which is confirmed by both the magnetic measurement and anomalous Hall effect measurement.The analyses of the anomalous Hall effect scaling in quaternary Mn-Ru-V-Ga alloy reveal the dominant role of skew scattering,notably that contributed caused by the thermally excited phonons,in contrast to the dominant intrinsic mechanism found in many other 3d ferromagnets and Heusler compounds.It is further shown that the Ga antisites and V content can simultaneously control the residual resistivity ratio(RRR)as well as the relative contribution of phonon and defect to the anomalous Hall effect a"/a0'in Mn-Ru-V-Ga,resulting in a scaling relation a"/a0'∝RRR^(1.8).展开更多
We have investigated the low-temperature magnetism and spin-lattice coupling in (Bio.46Nao.46Bao.os)TiO3 :Co in order to understand the magnetoelectric effect in such artificially synthesized dilute magnetic ferroe...We have investigated the low-temperature magnetism and spin-lattice coupling in (Bio.46Nao.46Bao.os)TiO3 :Co in order to understand the magnetoelectric effect in such artificially synthesized dilute magnetic ferroelectrics. It is revealed that the as-prepared (Bio.46Nao.46Bao.os)TiO3:Co at Co content of 20%~30% exhibits fascinating ferrimagnetism which is robust against magnetic field, the abnormal spin lattice coupling characterized by a negative magnetostriction effect; and the suppressed magnetic moment within the temperature range of 30 K-50 K is identified. These magnetic behaviours at low temperatures can be explained by the competition between the ferrimagnetic response and the magnetic moment suppression induced by the abnormal spin lattice coupling effect. Finally, the ferroelectric and magnetodielectric properties are also discussed.展开更多
Pd/Co_(2)MnSi(CMS)/NiFe_(2)O_(4)(NFO)/Pd multilayers were fabricated on F-mica substrate by magnetron sputtering.The best PMA performance of the multilayer structure Pd(3 nm)/CMS(5 nm)/NFO(0.8 nm)/Pd(3 nm)was obtained...Pd/Co_(2)MnSi(CMS)/NiFe_(2)O_(4)(NFO)/Pd multilayers were fabricated on F-mica substrate by magnetron sputtering.The best PMA performance of the multilayer structure Pd(3 nm)/CMS(5 nm)/NFO(0.8 nm)/Pd(3 nm)was obtained by adjusting the thickness of the CMS and NFO layers.F-mica substrate has a flatter surface than glass and Si/SiO_(2) substrate.The magnetic anisotropy energy density(K_(eff))of the sample deposited on F-mica substrates is 0.6711 Merg/cm^(3)(1 erg=10^(-7) J),which is about 30%higher than that of the multilayer films deposited on glass(0.475 Merg/cm^(3))and Si/SiO_(2)(0.511 Merg/cm^(3))substrates,and the R_(Hall) and H_(C) are also significantly increased.In this study,the NFO layer prepared by sputtering in the high purity Ar environment was exposed to the high purity O_(2) atmosphere for 5 min,which can effectively eliminate the oxygen loss and oxygen vacancy in NFO,ensuring enough Co-O orbital hybridization at the interface of CMS/NFO,and thus effectively improve the sample PMA.展开更多
Concentrations of copper (Cu) and zinc (Zn) and various magnetic parameters in contaminated urban roadside soils were investigated using chemical analysis and magnetic measurements. The results revealed highly ele...Concentrations of copper (Cu) and zinc (Zn) and various magnetic parameters in contaminated urban roadside soils were investigated using chemical analysis and magnetic measurements. The results revealed highly elevated Cu and Zn concentrations as well as magnetic susceptibility in the roadside soils. The mean concentrations of Cu and Zn in these roadside soils were almost twice those in average Chinese soils, with the mean magnetic susceptibility of the roadside soils reaching about 179 ×10^-8 m^3 kg^-1. This enhanced magnetic susceptibility was attributed to the presence of anthropogenic soft ferrimagnetic particles. A low frequency-dependent susceptibility (2.5%± 1.0%) observed in the roadside soils indicated the coarse multidomain (MD) ferrimagnetic grains to be the dominant contributor to magnetic susceptibility. The Cu and Zn concentration of the soils had highly significant linear correlations with magnetic susceptibility (P 〈 0.01), anhysteretic remanent magnetization (P 〈 0.01), and saturation isothermal remanent magnetization (P 〈 0.01). This suggested that heavy metals were associated with ferrimagnetic particles in soils, which were attributed to input of traffic emissions and industrial activities. Scanning electron microscopy and energy dispersive X-ray spectra of magnetic extracts of the roadside soils further suggested the llnk between the magnetic signal and concentrations of heavy metals. Thus, the magnetic parameters could provide a proxy measure for the level of heavy metal contamination and could be a potential tool for the detection and mapping of contaminated soils.展开更多
The multisublattice Green's function technique is applied to study the magnetic properties of a mixed spin-2 and spin-5/2 Heisenberg ferrimagnetic system on a two-dimensional honeycomb lattice. The role of the differ...The multisublattice Green's function technique is applied to study the magnetic properties of a mixed spin-2 and spin-5/2 Heisenberg ferrimagnetic system on a two-dimensional honeycomb lattice. The role of the different interactions in the Hamiltonian is explored. When only the nearest-neighbor interaction and the single-ion anisotropy are included, our results indicate that there are compensation points at finite temperatures. When the next-nearest-neighbor interaction exceeds a minimum value that depends on the other parameters in the Hamiltonian, the compensation point disappears. The next-nearest-neighbor interaction has the effect of changing the compensation temperature.展开更多
Ferrimagnets, which contain the advantages of both ferromagnets(detectable moments) and antiferromagnets(ultrafast spin dynamics), have recently attracted great attention. Here, we report the optimization of epitaxial...Ferrimagnets, which contain the advantages of both ferromagnets(detectable moments) and antiferromagnets(ultrafast spin dynamics), have recently attracted great attention. Here, we report the optimization of epitaxial growth of a tetragonal perpendicularly magnetized ferrimagnet Mn_(2)Ga on MgO. Electrical transport, magnetic properties and the anomalous Hall effect(AHE) were systematically studied. Furthermore, we successfully integrated high-quality epitaxial ferrimagnetic Mn_(2)Ga thin films onto ferroelectric 0.7PbMg_(1/3)Nb_(2/3)O_(3)–0.3PbTiO_(3) single crystals with a MgO buffer layer. It was found that the AHE of such a ferrimagnet can be effectively modulated by a small electric field over a large temperature range in a nonvolatile manner. This work thus demonstrates the great potential of ferrimagnets for developing high-density and low-power spintronic devices.展开更多
The present study reports the magnetizations and magneto-transport properties of PrFel_xNixO3 thin films grown by pulsed laser ablation technique on LaA103 snbstrates. From DC M/H plots of these films, weak ferromagne...The present study reports the magnetizations and magneto-transport properties of PrFel_xNixO3 thin films grown by pulsed laser ablation technique on LaA103 snbstrates. From DC M/H plots of these films, weak ferromagnetism or ferrimagnetism behaviors are observed. With Ni substitution, reduction in saturation magnetization is also seen. With Ni doping, variations in saturation field (Hs), coercive field (Hc), Weiss temperature (0), and effective magnetic moment (Pelf) are seen. A small change of magnetoresitance with application of higher field is observed. Various essential parameters like density of state (Nf) at Fermi level, Mott's characteristic temperature (To), and activation energy (Ea) in the presence of and in the absence of magnetic field are calculated. The present observed magnetic properties are related to the change of Fe-O bond length (causing an overlap between the oxygen p orbital and iron d orbital) and the deviation of the Fe-O-Fe angle from 180~. Reduction of magnetic domain after Ni doping is also explored to explain the present observed magnetic behavior of the system. The influence of doping on various transport properties in these thin films indicates a distortion in the lattice structure and single particle band width, owing to stress-induced reduction in unit cell volume.展开更多
Rare earth iron garnets R3Fe5-xMnxO12(R=Pr, Nd, Sm, Eu) were prepared through mild hydrothermal me- thod. The initial alkalinity of solutions was thought to play an important role in governing the content of Mn. The...Rare earth iron garnets R3Fe5-xMnxO12(R=Pr, Nd, Sm, Eu) were prepared through mild hydrothermal me- thod. The initial alkalinity of solutions was thought to play an important role in governing the content of Mn. The effect of substitution Fe^3+ ions by Mn^3+ ions on magnetic properties was investigated. The saturation magnetizations of Mn-doped samples are larger than that of corresponding parent compounds due to the moment of Mn^3+ ion being smaller than that of Fe^3+. It is clearly shown that incorporation of Mn^3+ gives rise to significant variations in the Curie temperature. With increasing of Mn content x, Curie temperatures reduced sharply for the garnets, which could be explained by the exchange interaction between a-d Fe^3+ being reduced in these compounds.展开更多
We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies,...We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies, λ and D respectively,the energy spectrums, internal energy, static susceptibility and specific heat are calculated. Especially, the quantum phase transition of the magnetization plateau induced by single-ion anisotropy D is obtained in the model of the ferrimagnetic spin chain by using Dyson–Maleev mean-field theory.展开更多
This article aims to investigate the possibility to turn the multiferroic orders and magnetocapacitance effect close to/above room temperature in nanosized GaFeO3 ceramics by a sol-gel preparation method and substitut...This article aims to investigate the possibility to turn the multiferroic orders and magnetocapacitance effect close to/above room temperature in nanosized GaFeO3 ceramics by a sol-gel preparation method and substitution with non-magnetic Zn atoms. Therefore, in this work, we have synthesized a series of nanocrystalline Ga1-xZnxFeO3(GZFO, x = 0, 0.01, 0.05 and 0.1) ceramic samples and study the effect of Zn substitution on their structural, magnetic, and electric properties. All the GZFO samples have an orthorhombic structure with Pc21n space group and the value of lattice parameters increase systematically with increasing Zn concentration. Interestingly, it shows that magnetic and electric properties are strongly dependent on the Zn substitution concentration. Based on the results of temperature-dependent magnetizations, M(T), it is observed that with increasing Zn-content up to 0.10, the ferrimagnetic transition temperature (TC) increases from 306 to 320 K. It is also found that the nanocrystalline Zn-doped GaFeO3 (GFO) samples exhibit the characteristics of ferroelectricity at room temperature. Furthermore, the?magnetization, ferroelectric polarization and magnetocapacitance of Zn-doped GFO nanosized ceramics are enhanced compared to those of the pristine sample of GFO ferrite. These results open wide perspectives for the applications of room temperature multiferroic devices.展开更多
The electronic structures of Ti_2NbSb with Hg_2CuTi structure and TiZrNbSb with LiMgPdSn structure are investigated using first-principles calculations.The results indicate that Ti_2NbSb is a fully compensated ferrima...The electronic structures of Ti_2NbSb with Hg_2CuTi structure and TiZrNbSb with LiMgPdSn structure are investigated using first-principles calculations.The results indicate that Ti_2NbSb is a fully compensated ferrimagnetic spin-gapless semiconductor with an energy gap of 0.13 e V,and TiZrNbSb is a half-metallic fully compensated ferrimagnet with a half-metallic gap of 0.17 e V.For Ti_2NbSb,the total energy of the Hg_2CuTi structure is0.62 e V/f.u.higher than that of the L2_(1) structure,which is the ground state,and for TiZrNbSb,the total energy of the structure considered in this work is only 0.15 e V/f.u.larger than that of the ground state.Thus both of them may be good candidates for spintronic applications.展开更多
Magnetic properties of a two sublattice ferrimagnet with antiferromagnetic exchange interaction inside one of the sublattices are calculated within the framework of the molecular field theory taking into account the a...Magnetic properties of a two sublattice ferrimagnet with antiferromagnetic exchange interaction inside one of the sublattices are calculated within the framework of the molecular field theory taking into account the anisotropy of unstable sublattice. The magnetization curves of single crystal GdMn 2Ge 2 for the magnetic field parallel and perpendicular to the c axis at different temperatures are calculated. Field induced magnetic phase transitions in GdMn 2Ge 2 are discussed. Calculated H T magnetic phase diagrams are in fair agreement with experimental data.展开更多
The effects of assuming equal or unequal crystal fields (CF) on the phase diagrams of a mixed spin-1 and spin-5/2 system are investigated in terms of the recursion relations on the Bethe lattice (BL). The equal CF...The effects of assuming equal or unequal crystal fields (CF) on the phase diagrams of a mixed spin-1 and spin-5/2 system are investigated in terms of the recursion relations on the Bethe lattice (BL). The equal CF case was considered for the coordination numbers q = 3,4, and 6, while for q = 3 the unequal CF case was also studied. It was found that for the equal CF case, the model exhibits second-order phase transitions and two compensation temperatures for all q, the reentrant behavior for q = 4 and first-order phase transitions and tricritical point (TCP) for q = 6. In the unequal CF case for q = 3, the system yields first- and second-order phase transitions, TCP's, and three compensation temperatures. In addition, the TCP's in a very short range are classified as the stable and unstable ones depending on their free energies.展开更多
Magnetic hyperthermia is a fast emerging, non-invasive cancer treatment method which is used synergistically with the existing cancer therapeutics. We have attempted to address the current challenges in clinical magne...Magnetic hyperthermia is a fast emerging, non-invasive cancer treatment method which is used synergistically with the existing cancer therapeutics. We have attempted to address the current challenges in clinical magnetic hyperthermia-improved biocompatibility and enhanced heating characteristics, through a single combinatorial approach. Both superparamagnetic iron oxide nanoparticles(SPIONs) of size 10 nm and ferrimagnetic iron oxide nanoparticles(FIONs) of size 30 nm were synthesized by thermal decomposition method for comparison studies. Two different surface modifying agents, viz, Cetyl Trimethyl Ammonium Bromide and 3-Aminopropyltrimethoxysilane, were used to conjugate Bovine Serum Albumin(BSA) over the iron oxide nanoparticles via two different methods—surface charge adsorption and covalent amide bonding, respectively. The preliminary haemolysis and cell viability experiments show that BSA conjugation mitigates the haemolytic effect of the iron oxide nanoparticles on erythrocytes and is non-cytotoxic to the healthy Baby Hamster Kidney cells. It was observed from the results that due to better colloidal stability, the SAR value of the BSA-iron oxide nanoparticles is higher than the iron oxide nanoparticles without BSA, irrespective of the size of the iron oxide nanoparticles and method of conjugation. The BSA-FIONs seem to show improved biocompatibility, as the haemolytic index is less than 2 % and cell viability is up to 120 %, when normalized with the control. The SAR value of BSAFIONs is 2300 Wg^(-1) when compared to 1700 Wg^(-1) of FIONs without BSA conjugation. Thus, we report here that BSA conjugation over FIONs(with a high saturation magnetization of 87 emug^(-1)) provide a single combinatorial approach to improve the biocompatibility and enhance the SAR value for magnetic hyperthermia, thus addressing both the current challenges of the same.展开更多
The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2- x Lax MnMoO6 (0 ≤...The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2- x Lax MnMoO6 (0 ≤ x ≤ 1 ). The compounds have a monoclinic structure (space group P21/n) and the cell volume expands monotonically with La doping. The Tc and the magnetic moment rise and the cusp-like transition temperature below which the magnetic frustration occurs shifts to high temperature as x increases. With La doping, electrical resistivity of Sr2-x LaxMnMoO6 decreases only at low doping levels (x ≤0.2); while at high doping levels (0.8≤x ≤1), electrical resistivity tends to increase greatly. The resuits suggest that the competition between band filling effect and steric effect coexists in the whole doping range, and the formation of ferrimagnetic interactions is not simply at the expense of antiferromagnetic interactions.展开更多
Antiferromagnets offer great potential for high-speed data processing applications,as they can expend spintronic devices from a static storage and gigahertz frequency range to the terahertz range.However,their zero ne...Antiferromagnets offer great potential for high-speed data processing applications,as they can expend spintronic devices from a static storage and gigahertz frequency range to the terahertz range.However,their zero net magnetization makes them difficult to manipulate and detect.In recent years,there has been a lot of attention given to the ultrafast manipulation of magnetic order using ultra-short single laser pulses,but it remains unknown whether a similar scenario can be observed in antiferromagnets.In this work,we demonstrate the manipulation of antiferromagnets with a single femtosecond laser pulse in perpendicular exchange-biased Co/Ir Mn/Co Gd trilayers.We study the dual exchange bias interlayer interaction in quasi-static conditions and competition in ultrafast antiferromagnet rearrangement.Our results show that,compared to conventional ferromagnetic/antiferromagnetic systems,the Ir Mn antiferromagnet can be ultrafast and efficiently manipulated by the coupled Co Gd ferrimagnetic layer,which paves the way for potential energy-efficient spintronic devices.展开更多
We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous...We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous Hall effect(AHE) due to Co-3d electrons. With Nd-4f electronic magnetism, ferrimagnetic NdCo_(2)As_(2) manifests pronounced sign reversal and multiple hysteresis loops in temperature-and field-dependent magnetization, Hall resistivity, and magnetoresistance, due to complicated magnetic structural changes. We reveal that the AHE for NdCo_(2)As_(2) is stemming from the Co sub-lattice and deduce its phase diagram which includes magnetic compensation and two meta-magnetic phase transitions. The sensitivity of the Hall effect on the details of the magnetic structures in ferrimagnetic NdCo_(2)As_(2) provides a unique opportunity to explore the magnetic interaction between 4f and 3d electrons and its impact on the electronic structure.展开更多
We use the Schwinger-boson approach to study the anisotropy ferrimagnetic spin-(1/2,1) chain with bond alternation.Based on the effect of bond alternation δ,we obtain energy gap,free energy,and specific heat,respec...We use the Schwinger-boson approach to study the anisotropy ferrimagnetic spin-(1/2,1) chain with bond alternation.Based on the effect of bond alternation δ,we obtain energy gap,free energy,and specific heat,respectively.The specific heat with larger bond alternation(δ 〉 0.7) displays a peak at low temperature.Based on the effect of XXZ anisotropy parameter Δ,we present excited spectrums,free energy,and specific heat,respectively.展开更多
基金supported by the Natural Science Foundation of Wenzhou Institute,University of Chinese Academy of Sciences(UCAS)(Grant No.WIUCASQD2023004)the National Natural Science Foundation of China(Grant Nos.12304006,12404265,and 12435001)+2 种基金the Natural Science Foundation of Shanghai,China(Grant No.23JC1401400)the Natural Science Foundation of Wenzhou(Grant No.L2023005)the Fundamental Research Funds for the Central Universities of East China University of Science and Technology。
文摘Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.Among these materials,fully compensated ferrimagnets are particularly promising due to their unique characteristics such as the magneto-optical efect,completely spin-polarized currents,and the anomalous Hall efect.We performed a structural search on 2D unconventional stoichiometric Cr-I crystals using a global optimization algorithm.The most stable CrI-P21/m monolayer is a fully compensated ferrimagnetic semiconductor with a band gap of 1.57 eV and a high magnetic transition temperature of 592 K.The spontaneous spin splitting in CrI-P21/m originates from the inequivalent local coordination environments of Cr^(1)and Cr^(2)ions,yielding a mismatch in their 3d orbitals splitting.Notably,carrier doping at a concentration of 0.01 electrons or holes per atom enables reversible spin polarization,generating a fully spin-polarized current in CrI-P21/m.This performance makes it a highly promising candidate for spintronic devices.Our fndings not only provide a structural paradigm for discovering fully compensated ferrimagnets but also open a new avenue for designing zero-moment magnetic materials with intrinsic spin splitting.
基金supported by the National Natural Science Foundation of China(Nos.51971122,52371191,52301244)the National Key R&D Program of China(No.2022YFB3505301)。
文摘3d transition metal chalcogenides have attracted much attention due to their unique magnetic properties.Although various Cr,V,and Fe-based chalcogenides have been fabricated recently,the limited Curie temperature(T_C)still hinders their practical application.Based on the structural and magnetic advantages of MFe_(2)O_(4)and Fe_(3)Se_(4),we developed a one-pot solution synthesis method for the fabrication of NiFe_(2)Se_(4)nanostructures with structural continuity,to facilitate the investigation of their magnetic properties.Notably,the morphology of Ni Fe_(2)Se_(4)can be controlled from nano-rods to nano-platelets by controlling the growth direction.The coercivity(H_(C))of NiFe_(2)Se_(4)with nano-cactus structure exhibits a maximum of 12.77kOe at 5 K.The coercivity of ferrimagnetic NiFe_(2)Se_(4)nano-platelets can be further adjusted to 1.52 kOe at room temperature.These results show that the magnetic properties of NiFe_(2)Se_(4)can be significantly modified by controlling their morphologies.We also extend the method to the synthesis of Co Fe_(2)Se_(4)nano-cactus with an ultrahigh coercivity of 17.85 k Oe at 5 K.Obviously,the synthesis strategy and their excellent magnetic properties of MFe_(2)Se_(4)have sparked interest in ternary transition metal selenides as potential hard magnetic materials.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1402600)the National Natural Science Foundation of China(Grant No.12274438)the Beijing Natural Science Foundation,China(Grant No.Z230006)。
文摘Cubic Mn_(2)Ru_(x)Ga Heusler compound is a typical example of compensated ferrimagnet with attractive potential for high-density,ultrafast,and low-power spintronic applications.In the form of epitaxial thin films,Mn_(2)Ru_(x)Ga exhibits high spin polarization and high tunability of compensation temperature by freely changing the Ru content x in a broad range(0.3<x<1.0).Herein Mn-Ru-Ga-based polycrystalline bulk buttons prepared by arc melting are systematically studied and it is found that in equilibrium bulk form,the cubic structure is unstable when x<0.75.To overcome this limitation,Mn-Ru-Ga is alloyed with a fourth element V.By adjusting the content of V in the By adjusting the content of V in the Mn_(2)Ru_(0.75)V_(y)Ga and Mn_(2.25-y)Ru_(0.75)V_(y)Ga quaternary systems the magnetic compensation temperature is tuned.Compensation is achieved near 300 K which is confirmed by both the magnetic measurement and anomalous Hall effect measurement.The analyses of the anomalous Hall effect scaling in quaternary Mn-Ru-V-Ga alloy reveal the dominant role of skew scattering,notably that contributed caused by the thermally excited phonons,in contrast to the dominant intrinsic mechanism found in many other 3d ferromagnets and Heusler compounds.It is further shown that the Ga antisites and V content can simultaneously control the residual resistivity ratio(RRR)as well as the relative contribution of phonon and defect to the anomalous Hall effect a"/a0'in Mn-Ru-V-Ga,resulting in a scaling relation a"/a0'∝RRR^(1.8).
基金supported by the National Natural Science Foundation of China (Grant Nos. 50832002 and 10874075)the National Basic Research Program of China (Grant Nos. 2009CB613303 and 2009CB929501)the Natural Science Foundation of Jiangsu Province,China (Grant No. BK2008024)
文摘We have investigated the low-temperature magnetism and spin-lattice coupling in (Bio.46Nao.46Bao.os)TiO3 :Co in order to understand the magnetoelectric effect in such artificially synthesized dilute magnetic ferroelectrics. It is revealed that the as-prepared (Bio.46Nao.46Bao.os)TiO3:Co at Co content of 20%~30% exhibits fascinating ferrimagnetism which is robust against magnetic field, the abnormal spin lattice coupling characterized by a negative magnetostriction effect; and the suppressed magnetic moment within the temperature range of 30 K-50 K is identified. These magnetic behaviours at low temperatures can be explained by the competition between the ferrimagnetic response and the magnetic moment suppression induced by the abnormal spin lattice coupling effect. Finally, the ferroelectric and magnetodielectric properties are also discussed.
文摘Pd/Co_(2)MnSi(CMS)/NiFe_(2)O_(4)(NFO)/Pd multilayers were fabricated on F-mica substrate by magnetron sputtering.The best PMA performance of the multilayer structure Pd(3 nm)/CMS(5 nm)/NFO(0.8 nm)/Pd(3 nm)was obtained by adjusting the thickness of the CMS and NFO layers.F-mica substrate has a flatter surface than glass and Si/SiO_(2) substrate.The magnetic anisotropy energy density(K_(eff))of the sample deposited on F-mica substrates is 0.6711 Merg/cm^(3)(1 erg=10^(-7) J),which is about 30%higher than that of the multilayer films deposited on glass(0.475 Merg/cm^(3))and Si/SiO_(2)(0.511 Merg/cm^(3))substrates,and the R_(Hall) and H_(C) are also significantly increased.In this study,the NFO layer prepared by sputtering in the high purity Ar environment was exposed to the high purity O_(2) atmosphere for 5 min,which can effectively eliminate the oxygen loss and oxygen vacancy in NFO,ensuring enough Co-O orbital hybridization at the interface of CMS/NFO,and thus effectively improve the sample PMA.
基金the National Natural Science Foundation of China (No.40371056)the Natural Science Foun-dation of Zhejiang Province, China (No.R305078).
文摘Concentrations of copper (Cu) and zinc (Zn) and various magnetic parameters in contaminated urban roadside soils were investigated using chemical analysis and magnetic measurements. The results revealed highly elevated Cu and Zn concentrations as well as magnetic susceptibility in the roadside soils. The mean concentrations of Cu and Zn in these roadside soils were almost twice those in average Chinese soils, with the mean magnetic susceptibility of the roadside soils reaching about 179 ×10^-8 m^3 kg^-1. This enhanced magnetic susceptibility was attributed to the presence of anthropogenic soft ferrimagnetic particles. A low frequency-dependent susceptibility (2.5%± 1.0%) observed in the roadside soils indicated the coarse multidomain (MD) ferrimagnetic grains to be the dominant contributor to magnetic susceptibility. The Cu and Zn concentration of the soils had highly significant linear correlations with magnetic susceptibility (P 〈 0.01), anhysteretic remanent magnetization (P 〈 0.01), and saturation isothermal remanent magnetization (P 〈 0.01). This suggested that heavy metals were associated with ferrimagnetic particles in soils, which were attributed to input of traffic emissions and industrial activities. Scanning electron microscopy and energy dispersive X-ray spectra of magnetic extracts of the roadside soils further suggested the llnk between the magnetic signal and concentrations of heavy metals. Thus, the magnetic parameters could provide a proxy measure for the level of heavy metal contamination and could be a potential tool for the detection and mapping of contaminated soils.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10574048 and 20490210
文摘The multisublattice Green's function technique is applied to study the magnetic properties of a mixed spin-2 and spin-5/2 Heisenberg ferrimagnetic system on a two-dimensional honeycomb lattice. The role of the different interactions in the Hamiltonian is explored. When only the nearest-neighbor interaction and the single-ion anisotropy are included, our results indicate that there are compensation points at finite temperatures. When the next-nearest-neighbor interaction exceeds a minimum value that depends on the other parameters in the Hamiltonian, the compensation point disappears. The next-nearest-neighbor interaction has the effect of changing the compensation temperature.
基金the National Natural Science Foundation of China(Nos.52121001,51822101,51861135104 and 51771009)。
文摘Ferrimagnets, which contain the advantages of both ferromagnets(detectable moments) and antiferromagnets(ultrafast spin dynamics), have recently attracted great attention. Here, we report the optimization of epitaxial growth of a tetragonal perpendicularly magnetized ferrimagnet Mn_(2)Ga on MgO. Electrical transport, magnetic properties and the anomalous Hall effect(AHE) were systematically studied. Furthermore, we successfully integrated high-quality epitaxial ferrimagnetic Mn_(2)Ga thin films onto ferroelectric 0.7PbMg_(1/3)Nb_(2/3)O_(3)–0.3PbTiO_(3) single crystals with a MgO buffer layer. It was found that the AHE of such a ferrimagnet can be effectively modulated by a small electric field over a large temperature range in a nonvolatile manner. This work thus demonstrates the great potential of ferrimagnets for developing high-density and low-power spintronic devices.
文摘The present study reports the magnetizations and magneto-transport properties of PrFel_xNixO3 thin films grown by pulsed laser ablation technique on LaA103 snbstrates. From DC M/H plots of these films, weak ferromagnetism or ferrimagnetism behaviors are observed. With Ni substitution, reduction in saturation magnetization is also seen. With Ni doping, variations in saturation field (Hs), coercive field (Hc), Weiss temperature (0), and effective magnetic moment (Pelf) are seen. A small change of magnetoresitance with application of higher field is observed. Various essential parameters like density of state (Nf) at Fermi level, Mott's characteristic temperature (To), and activation energy (Ea) in the presence of and in the absence of magnetic field are calculated. The present observed magnetic properties are related to the change of Fe-O bond length (causing an overlap between the oxygen p orbital and iron d orbital) and the deviation of the Fe-O-Fe angle from 180~. Reduction of magnetic domain after Ni doping is also explored to explain the present observed magnetic behavior of the system. The influence of doping on various transport properties in these thin films indicates a distortion in the lattice structure and single particle band width, owing to stress-induced reduction in unit cell volume.
基金Supported by the National Natural Science Foundation of China(Nos.90922034,20771042)
文摘Rare earth iron garnets R3Fe5-xMnxO12(R=Pr, Nd, Sm, Eu) were prepared through mild hydrothermal me- thod. The initial alkalinity of solutions was thought to play an important role in governing the content of Mn. The effect of substitution Fe^3+ ions by Mn^3+ ions on magnetic properties was investigated. The saturation magnetizations of Mn-doped samples are larger than that of corresponding parent compounds due to the moment of Mn^3+ ion being smaller than that of Fe^3+. It is clearly shown that incorporation of Mn^3+ gives rise to significant variations in the Curie temperature. With increasing of Mn content x, Curie temperatures reduced sharply for the garnets, which could be explained by the exchange interaction between a-d Fe^3+ being reduced in these compounds.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774035)the Qianjiang RenCai Program of Zhejiang Province,China(Grant No.2007R0010)
文摘We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies, λ and D respectively,the energy spectrums, internal energy, static susceptibility and specific heat are calculated. Especially, the quantum phase transition of the magnetization plateau induced by single-ion anisotropy D is obtained in the model of the ferrimagnetic spin chain by using Dyson–Maleev mean-field theory.
文摘This article aims to investigate the possibility to turn the multiferroic orders and magnetocapacitance effect close to/above room temperature in nanosized GaFeO3 ceramics by a sol-gel preparation method and substitution with non-magnetic Zn atoms. Therefore, in this work, we have synthesized a series of nanocrystalline Ga1-xZnxFeO3(GZFO, x = 0, 0.01, 0.05 and 0.1) ceramic samples and study the effect of Zn substitution on their structural, magnetic, and electric properties. All the GZFO samples have an orthorhombic structure with Pc21n space group and the value of lattice parameters increase systematically with increasing Zn concentration. Interestingly, it shows that magnetic and electric properties are strongly dependent on the Zn substitution concentration. Based on the results of temperature-dependent magnetizations, M(T), it is observed that with increasing Zn-content up to 0.10, the ferrimagnetic transition temperature (TC) increases from 306 to 320 K. It is also found that the nanocrystalline Zn-doped GaFeO3 (GFO) samples exhibit the characteristics of ferroelectricity at room temperature. Furthermore, the?magnetization, ferroelectric polarization and magnetocapacitance of Zn-doped GFO nanosized ceramics are enhanced compared to those of the pristine sample of GFO ferrite. These results open wide perspectives for the applications of room temperature multiferroic devices.
基金Supported by the National Natural Science Foundation of China under Grant No 51301119the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No 2013021010-1the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province under Grant No 201802023
文摘The electronic structures of Ti_2NbSb with Hg_2CuTi structure and TiZrNbSb with LiMgPdSn structure are investigated using first-principles calculations.The results indicate that Ti_2NbSb is a fully compensated ferrimagnetic spin-gapless semiconductor with an energy gap of 0.13 e V,and TiZrNbSb is a half-metallic fully compensated ferrimagnet with a half-metallic gap of 0.17 e V.For Ti_2NbSb,the total energy of the Hg_2CuTi structure is0.62 e V/f.u.higher than that of the L2_(1) structure,which is the ground state,and for TiZrNbSb,the total energy of the structure considered in this work is only 0.15 e V/f.u.larger than that of the ground state.Thus both of them may be good candidates for spintronic applications.
文摘Magnetic properties of a two sublattice ferrimagnet with antiferromagnetic exchange interaction inside one of the sublattices are calculated within the framework of the molecular field theory taking into account the anisotropy of unstable sublattice. The magnetization curves of single crystal GdMn 2Ge 2 for the magnetic field parallel and perpendicular to the c axis at different temperatures are calculated. Field induced magnetic phase transitions in GdMn 2Ge 2 are discussed. Calculated H T magnetic phase diagrams are in fair agreement with experimental data.
基金supported by Scientific Research Found of Karatekin University (Grant No.2011/10)
文摘The effects of assuming equal or unequal crystal fields (CF) on the phase diagrams of a mixed spin-1 and spin-5/2 system are investigated in terms of the recursion relations on the Bethe lattice (BL). The equal CF case was considered for the coordination numbers q = 3,4, and 6, while for q = 3 the unequal CF case was also studied. It was found that for the equal CF case, the model exhibits second-order phase transitions and two compensation temperatures for all q, the reentrant behavior for q = 4 and first-order phase transitions and tricritical point (TCP) for q = 6. In the unequal CF case for q = 3, the system yields first- and second-order phase transitions, TCP's, and three compensation temperatures. In addition, the TCP's in a very short range are classified as the stable and unstable ones depending on their free energies.
文摘Magnetic hyperthermia is a fast emerging, non-invasive cancer treatment method which is used synergistically with the existing cancer therapeutics. We have attempted to address the current challenges in clinical magnetic hyperthermia-improved biocompatibility and enhanced heating characteristics, through a single combinatorial approach. Both superparamagnetic iron oxide nanoparticles(SPIONs) of size 10 nm and ferrimagnetic iron oxide nanoparticles(FIONs) of size 30 nm were synthesized by thermal decomposition method for comparison studies. Two different surface modifying agents, viz, Cetyl Trimethyl Ammonium Bromide and 3-Aminopropyltrimethoxysilane, were used to conjugate Bovine Serum Albumin(BSA) over the iron oxide nanoparticles via two different methods—surface charge adsorption and covalent amide bonding, respectively. The preliminary haemolysis and cell viability experiments show that BSA conjugation mitigates the haemolytic effect of the iron oxide nanoparticles on erythrocytes and is non-cytotoxic to the healthy Baby Hamster Kidney cells. It was observed from the results that due to better colloidal stability, the SAR value of the BSA-iron oxide nanoparticles is higher than the iron oxide nanoparticles without BSA, irrespective of the size of the iron oxide nanoparticles and method of conjugation. The BSA-FIONs seem to show improved biocompatibility, as the haemolytic index is less than 2 % and cell viability is up to 120 %, when normalized with the control. The SAR value of BSAFIONs is 2300 Wg^(-1) when compared to 1700 Wg^(-1) of FIONs without BSA conjugation. Thus, we report here that BSA conjugation over FIONs(with a high saturation magnetization of 87 emug^(-1)) provide a single combinatorial approach to improve the biocompatibility and enhance the SAR value for magnetic hyperthermia, thus addressing both the current challenges of the same.
基金Project supported bythe National Natural Science Foundation of China (50073024 ,90101001) the Special Funds for MajorState Basic Research Projects (G1999064800) +1 种基金the Project fromthe Chinese Academy of Sciences (KJCX2-SW-H07) the In-ternational Collaboration Project from Changchun City ,China (04-03GH268)
文摘The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2- x Lax MnMoO6 (0 ≤ x ≤ 1 ). The compounds have a monoclinic structure (space group P21/n) and the cell volume expands monotonically with La doping. The Tc and the magnetic moment rise and the cusp-like transition temperature below which the magnetic frustration occurs shifts to high temperature as x increases. With La doping, electrical resistivity of Sr2-x LaxMnMoO6 decreases only at low doping levels (x ≤0.2); while at high doping levels (0.8≤x ≤1), electrical resistivity tends to increase greatly. The resuits suggest that the competition between band filling effect and steric effect coexists in the whole doping range, and the formation of ferrimagnetic interactions is not simply at the expense of antiferromagnetic interactions.
基金National Key Research and Development Program of China(Grant No.2022YFB4400200)the National Natural Science Foundation of China(Grant Nos.12104030,12104031,and 61627813)+10 种基金the Program of Introducing Talents of Discipline to Universities(Grant No.B16001)the Beijing Municipal Science and Technology Project(Grant No.Z201100004220002)China Postdoctoral Science Foundation(Grant No.2022M710320)China Scholarship Councilsupported by the ANR-15-CE24-0009 UMAMI and the ANR-20-CE09-0013by the Institute Carnot ICEEL for the project“Optic-switch”and Matelasby the Région Grand Estby the Metropole Grand Nancyby the impact project LUE-N4Spart of the French PIA project“Lorraine Universitéd’Excellence,”reference ANR-15-IDEX-04-LUEby the“FEDERFSE Lorraine et Massif Vosges 2014-2020,”a European Union Program。
文摘Antiferromagnets offer great potential for high-speed data processing applications,as they can expend spintronic devices from a static storage and gigahertz frequency range to the terahertz range.However,their zero net magnetization makes them difficult to manipulate and detect.In recent years,there has been a lot of attention given to the ultrafast manipulation of magnetic order using ultra-short single laser pulses,but it remains unknown whether a similar scenario can be observed in antiferromagnets.In this work,we demonstrate the manipulation of antiferromagnets with a single femtosecond laser pulse in perpendicular exchange-biased Co/Ir Mn/Co Gd trilayers.We study the dual exchange bias interlayer interaction in quasi-static conditions and competition in ultrafast antiferromagnet rearrangement.Our results show that,compared to conventional ferromagnetic/antiferromagnetic systems,the Ir Mn antiferromagnet can be ultrafast and efficiently manipulated by the coupled Co Gd ferrimagnetic layer,which paves the way for potential energy-efficient spintronic devices.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB1502502)the National Natural Science Foundation of China(Grant Nos.12141002 and 12225401)+6 种基金the Fund from Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratorysupported by the Interdisciplinary Program of Wuhan National High Magnetic Field Center(Grant No.WHMFC202123)Huazhong University of Science and Technologysupported by the National Natural Science Foundation of China(Grant Nos.12074041 and 11674030)the Foundation of the National Key Laboratory of Shock Wave and Detonation Physics(Grant No.6142A03191005)the National Key Research and Development Program of China(Grant No.2016YFA0302300)the startup funding of Beijing Normal University。
文摘We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous Hall effect(AHE) due to Co-3d electrons. With Nd-4f electronic magnetism, ferrimagnetic NdCo_(2)As_(2) manifests pronounced sign reversal and multiple hysteresis loops in temperature-and field-dependent magnetization, Hall resistivity, and magnetoresistance, due to complicated magnetic structural changes. We reveal that the AHE for NdCo_(2)As_(2) is stemming from the Co sub-lattice and deduce its phase diagram which includes magnetic compensation and two meta-magnetic phase transitions. The sensitivity of the Hall effect on the details of the magnetic structures in ferrimagnetic NdCo_(2)As_(2) provides a unique opportunity to explore the magnetic interaction between 4f and 3d electrons and its impact on the electronic structure.
基金supported by the National Natural Science Foundation of China(Grant No.10774035)the Qianjiang RenCai Program of Zhejiang Province,China(Grant No.2007R0010)
文摘We use the Schwinger-boson approach to study the anisotropy ferrimagnetic spin-(1/2,1) chain with bond alternation.Based on the effect of bond alternation δ,we obtain energy gap,free energy,and specific heat,respectively.The specific heat with larger bond alternation(δ 〉 0.7) displays a peak at low temperature.Based on the effect of XXZ anisotropy parameter Δ,we present excited spectrums,free energy,and specific heat,respectively.