期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
中小企业集群规划的FEEC模型
1
作者 乔恩言 陈文钢 《上海经济研究》 CSSCI 北大核心 2005年第9期57-62,共6页
本文通过比较经济系统及中小企业集群系统的相同之处提出了把FEEC(模糊可拓经济控制论)应用于中小企业集群规划等领域,并尝试着建立起一套可操作的方法,以解决实际问题。
关键词 feec模糊评语 中小企业集群 区域规划
在线阅读 下载PDF
模糊可拓经济控制理论及其应用 被引量:1
2
作者 贺仲雄 胡万军 《系统工程与电子技术》 EI CSCD 1997年第6期31-34,共4页
模糊可拓经济控制理论以经济空间为基础,从宏观上研究经济调控以及从经济实体或区域的自我发展的思想方法,并定量分析了这些思想方法的具体实现办法。本文进一步讨论了经济空间和FEEC控制器,并分析了FEEC理论中各数据成员和规则成员的表... 模糊可拓经济控制理论以经济空间为基础,从宏观上研究经济调控以及从经济实体或区域的自我发展的思想方法,并定量分析了这些思想方法的具体实现办法。本文进一步讨论了经济空间和FEEC控制器,并分析了FEEC理论中各数据成员和规则成员的表示,以及控制器所涉及的各种算法的解决办法。 展开更多
关键词 模糊控制系统 经济管理 feec 经济控制
在线阅读 下载PDF
前馈神经网络误差修正算法的改进和比较 被引量:2
3
作者 崔明义 苏白云 《计算机应用与软件》 CSCD 北大核心 2005年第9期35-36,120,共3页
前馈神经网络是神经计算中的一种重要的网络结构,在工程优化中得到了广泛的应用。其误差修正算法是决定网络性能的重要因素,对数据挖掘、神经网络集成、神经网络的硬件实现和分布式并行处理有着重要的意义。本文对几种误差修正算法进行... 前馈神经网络是神经计算中的一种重要的网络结构,在工程优化中得到了广泛的应用。其误差修正算法是决定网络性能的重要因素,对数据挖掘、神经网络集成、神经网络的硬件实现和分布式并行处理有着重要的意义。本文对几种误差修正算法进行了分析,并通过实例进行了比较,从中得出了有意义的结论。 展开更多
关键词 前馈神经网络 误差修正 算法 比较 误差修正算法 分布式并行处理 神经网络集成 网络结构 神经计算 工程优化
在线阅读 下载PDF
信息经济与决策支持系统
4
作者 梁明 贺仲雄 《国际技术经济研究》 2001年第2期42-47,共6页
本文提出将决策支持系统的最新成果 FHW、IAD、FGR等用于信息经济和价值创新 ,并结合人工智能、模糊集、可拓学、界壳论、消错学等建立信息经济决策支持系统 ( IE-DSS)。
关键词 信息经济 模糊灰色关联系统 决策支持系统 IEDSS
在线阅读 下载PDF
FINITE ELEMENT EXTERIOR CALCULUS FOR EVOLUTION PROBLEMS
5
作者 Andrew Gillette Michael Hoist Yunrong Zhu 《Journal of Computational Mathematics》 SCIE CSCD 2017年第2期187-212,共26页
Arnold, Falk, and Winther [Bull. Amer. Math. Soc. 47 (2010), 281-354] showed that mixed variational problems, and their numerical approximation by mixed methods, could be most completely understood using the ideas a... Arnold, Falk, and Winther [Bull. Amer. Math. Soc. 47 (2010), 281-354] showed that mixed variational problems, and their numerical approximation by mixed methods, could be most completely understood using the ideas and tools of Hilbert complexes. This led to the development of the Finite Element Exterior Calculus (FEEC) for a large class of linear elliptic problems. More recently, Holst and Stern [Found. Comp. Math. 12:3 (2012), 263 293 and 363-387] extended the FEEC framework to semi-linear problems, and to problems containing variational crimes, allowing for the analysis and numerical approximation of linear and nonlinear geometric elliptic partial differential equations on Riemannian man- ifolds of arbitrary spatial dimension, generalizing surface finite element approximation theory. In this article, we develop another distinct extension to the FEEC, namely to parabolic and hyperbolic evolution systems, allowing for the treatment of geometric and other evolution problems. Our approach is to combine the recent work on the FEEC for elliptic problems with a classical approach to solving evolution problems via semi-discrete finite element methods, by viewing solutions to the evolution problem as lying in time- parameterized Hilbert spaces (or Bochner spaces). Building on classical approaches by Thom^e for parabolic problems and Geveci for hyperbolic problems, we establish a priori error estimates for Galerkin FEM approximation in the natural parametrized Hilbert space norms. In particular, we recover the results of Thomée and Geveci for two-dimensional domains and lowest-order mixed methods as special cases, effectively extending their re- sults to arbitrary spatial dimension and to an entire family of mixed methods. We also show how the Holst and Stern framework allows for extensions of these results to certain semi-linear evolution problems. 展开更多
关键词 feec Elliptic equations Evolution equations Nonlinear equations Approx-imation theory Nonlinear approximation Inf-sup conditions A priori estimates.
原文传递
FINITE ELEMENT EXTERIOR CALCULUS FOR PARABOLIC EVOLUTION PROBLEMS ON RIEMANNIAN HYPERSURFACES
6
作者 Michael Hoist Christopher Tiee 《Journal of Computational Mathematics》 SCIE CSCD 2018年第6期792-832,共41页
Over the last ten years, Finite Element Exterior Calculus (FEEC) has been developed as a general framework for linear mixed variational problems, their numerical approximation by mixed methods, and their error analy... Over the last ten years, Finite Element Exterior Calculus (FEEC) has been developed as a general framework for linear mixed variational problems, their numerical approximation by mixed methods, and their error analysis. The basic approach in FEEC, pioneered by Arnold, Falk, and Winther in two seminal articles in 2006 and 2010, interprets these problems in the setting of Hilbert complexes, leading to a more general and complete understanding. Over the last five years, the FEEC framework has been extended to a broader set of problems. One such extension, due to Hoist and Stern in 2012, was to problems with variational crimes, allowing for the analysis and numerical approximation of linear and geometric elliptic partial differential equations oil Riemannian manifolds of arbitrary spatial dimension. Their results substantially generalize the existing surface finite element approximation theory in several respects. In 2014, Gillette, Hoist, and Zhu extended FEEC in another direction, namely to parabolic and hyperbolic evolution systems by combining the FEEC framework for elliptic operators with classical approaches for parabolic and hyperbolic operators, by viewing solutions to the evolution problem as lying in Bochner spaces (spaces of Banach-space valued parametrized curves). Related work on developing an FEEC theory for parabolic evolution problems has also been done independently by Arnold and Chen. In this article, we extend the work of Gillette-Holst- Zhu and Arnold-Chen to evolution problems on Riemannian manifolds, through tile use of framework developed by Holst and Stern for analyzing variational crimes. We establish a priori error estimates that reduce to the results from earlier work in tile flat (non-criminal) setting. Some numerical examples are also presented. 展开更多
关键词 feec Elliptic equations Evolution equations Approximation theory Inf-supconditions A priori estimates Variational crimes Equations on manifolds
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部