Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the c...Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the complex synthesis procedures,limited active sites,and insufficient mechanistic understanding.Herein,a facile oxygen-tolerant synthesis strategy was developed,which utilizes the nitrogen-rich structure of g-C_(3)N_(4)to capture Fe single atoms from ammonium iron citrate,successfully constructing an efficient photocatalytic composite.The resulting Fe single-atom-modified g-C_(3)N_(4)catalyst exhibited highly improved light absorption,charge carrier separation,and a substantially enhanced rate of H_(2)production photocatalytically under visible light irradiation.Experimental results demonstrated that the optimal sample achieves a H_(2)production rate of 683μmol·h-1·g^(-1),representing a 425% enhancement compared to pristine g-C_(3)N_(4).This study presents a facile oxygen-tolerant approach for metal immobilization using metal-organic precursors,where the nitrogen-rich framework of g-C_(3)N_(4)effectively captures Fe atoms as singular site within the composite.The developed synthesis strategy provides new insights for designing high-performance single-atom photocatalytic materials,potentially advancing the application and development of photocatalysis.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22272159)the Chinese Academy of Sciences(No.KFJ-XCZX-202304).
文摘Single-atom catalysts based on graphitic carbon nitride(g-C_(3)N_(4))show high potential for hydrogen production photocatalytically.However,it is still a challenge to develop single-atom-based g-C_(3)N_(4)due to the complex synthesis procedures,limited active sites,and insufficient mechanistic understanding.Herein,a facile oxygen-tolerant synthesis strategy was developed,which utilizes the nitrogen-rich structure of g-C_(3)N_(4)to capture Fe single atoms from ammonium iron citrate,successfully constructing an efficient photocatalytic composite.The resulting Fe single-atom-modified g-C_(3)N_(4)catalyst exhibited highly improved light absorption,charge carrier separation,and a substantially enhanced rate of H_(2)production photocatalytically under visible light irradiation.Experimental results demonstrated that the optimal sample achieves a H_(2)production rate of 683μmol·h-1·g^(-1),representing a 425% enhancement compared to pristine g-C_(3)N_(4).This study presents a facile oxygen-tolerant approach for metal immobilization using metal-organic precursors,where the nitrogen-rich framework of g-C_(3)N_(4)effectively captures Fe atoms as singular site within the composite.The developed synthesis strategy provides new insights for designing high-performance single-atom photocatalytic materials,potentially advancing the application and development of photocatalysis.