Thermodynamic properties for an alloy system play an important role in the materials science and engineer- ing. Therefore, theoretical calculations having the flexibility to deal with complexity are very useful and ha...Thermodynamic properties for an alloy system play an important role in the materials science and engineer- ing. Therefore, theoretical calculations having the flexibility to deal with complexity are very useful and have scien- tific meaning. The Hoch-Arpshofen model was deduced from physical principles and is applicable to binary, ternary and larger system using its binary interaction parameters only. Calculations of the activities of Fe-based liquid alloys are calculated using Hoch-Arpshofen model from data on the binary subsystems. Results for the activities for Fe-Au- Ni, Fe-Cr-Ni, Fe-Co-Cr and Fe-Co-Ni systems at required temperature are presented by Hoch-Arpshofen model. The average relative errors of prediction are 7.8%, 4.5%, 4.9~ and 2.7%, respectively. It shows that the calcu- lated results are in good agreement with the experimental data except Fe-Au-Ni system, which exhibits strong inter- action between unlike atoms. The model provides a simple, reliable and general method for calculating the activities for Fe-based liquid alloys.展开更多
A self adjusting model was presented on the basis of the effect of temperature gradient on eutectic growth and a curved solid/liquid interface. Finite differential method was adopted to solve the model. The average la...A self adjusting model was presented on the basis of the effect of temperature gradient on eutectic growth and a curved solid/liquid interface. Finite differential method was adopted to solve the model. The average lamellar spacing of the Al Al 3Fe eutectic alloy and the content fields ahead of the solidifying interface under different growth rates were calculated. Directional solidification experiments were carried out in order to prove the modification of the modeling. The experimental results are in relatively good agreement with the calculations.展开更多
A simple modified analytic EAM model for bcc Fe and fcc Al was used to calculate the lattice constant and elastic constants of B2 FeAl and DO3 Fe3Al alloys. The formation energies of ...A simple modified analytic EAM model for bcc Fe and fcc Al was used to calculate the lattice constant and elastic constants of B2 FeAl and DO3 Fe3Al alloys. The formation energies of vacancy and antisite were also calculated. The present calculations are in agreement with the experimental data and the theoretical results obtained by other authors.展开更多
In the present paper, a numerical modeling was developed to simulate the growth kinetics of ferrite transformed from austenite in Fe-C-∑X (X denotes substitution elements, such as Mn, Ni, Cr etc.) steels by solving...In the present paper, a numerical modeling was developed to simulate the growth kinetics of ferrite transformed from austenite in Fe-C-∑X (X denotes substitution elements, such as Mn, Ni, Cr etc.) steels by solving the diffusion equation using finite difference method (FDM). Coupled with the kinetic modeling, thermodynamic calculations were carried out to determine the γ/α phase equilibrium conditions using a para-equilibrium (PE) model. The dissipation of free energy for γ→α phase transformation due to the so-called solute drag effect (SDE) was taken into account in the thermodynamic modeling. With this modeling, simulations on the growth kinetics of ferrite in the steels containing austenite-stabilizing and ferrite-stabilizing elements (such as Ni, Mn and Si, Cr, respectively) were performed, which indicates that it deviates from the parabolic growth rate law after the initial stage of transformation. The results were compared with the experimental values given by Bradley and Aaronson, showing that this model has a reasonably good accuracy to predict the growth kinetics of ferrite.展开更多
By introducing aparameter of difference in ferrite formation temperature between binary Fe-C and multicomponent system,and referring to the thermodynamic model for Fe-C binary system,a simplified thermodynamic model f...By introducing aparameter of difference in ferrite formation temperature between binary Fe-C and multicomponent system,and referring to the thermodynamic model for Fe-C binary system,a simplified thermodynamic model for pro-eutectoid ferrite formation in Fe-ΣXiC multicomponent structural steels(Xi=Mn,Si,Mo,Cr,Ni or Ti,etc)was suggested.The comparison of the calculated Ae3 temperatures with the measured data of steels 42 shows that the relative standard deviation and root-mean-square(RMS)error between them are only 0.71% and 8.92 K,respectively.However,the deviations between the same measured data and the values calculated from the superelement model are as high as 1.86% and 23.83 K,respectively.It can be concluded that the simplified thermodynamic model for pro-eutectoid ferrite formation in multicomponent structural steels is acceptable and the calculated Ae3 temperatures are in good agreement with the experimental data.展开更多
Coupling with a three dimensional (3D) hydrodynamic model and a suspended solids model, a 3D model for the transport of Fe and Mn in Arha Reservoir, China, was developed. The 3D velocity fields for the flood season a...Coupling with a three dimensional (3D) hydrodynamic model and a suspended solids model, a 3D model for the transport of Fe and Mn in Arha Reservoir, China, was developed. The 3D velocity fields for the flood season are computed to drive the 3D model of Fe and Mn in which the processes of advection, diffusion, redox, sorption, desorption, deposition, and re suspension are included. The model has been calibrated by matching observed fluid, suspended solids, and total concentrations of Fe and Mn in the water column and in the sediment, successively. The model simulated both horizontal and vertical gradients of Fe and Mn in Arha Reservoir. It was found that Fe and especially Mn stratify in accordance with the stratification of DO during summer. The redox cycles across the water sediment interface has a principal role in the rise of Fe and Mn concentrations in the overlying water. It was also found that Fe and Mn loadings from the tributaries have a carryover effect on the water quality through a secondary contamination in the reservoir.展开更多
A sub-regular solution model SELFSReM4 used to evaluate activities of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper introduces...A sub-regular solution model SELFSReM4 used to evaluate activities of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper introduces the application of SELFSReM4 in evaluating activities of the components in C-Mn-Fe-Si system without SiC precipitation.展开更多
During the solidification process of binary Al Fe alloy under centrifugal casting, the primary phase of Al 3Fe migrates along the radius because of the density difference between the primary phase and the liquid alloy...During the solidification process of binary Al Fe alloy under centrifugal casting, the primary phase of Al 3Fe migrates along the radius because of the density difference between the primary phase and the liquid alloy. Therefore the temperature and concentration field are affected significantly by both the fluid flow and the solid phase migration. In order to take this factor into consideration, a two phase flow numerical model has been established in column coordinate to depict the solidification process of Al Fe alloy under centrifugal casting according to the feature that there exists the solid phase migration during the process. Thus the solidification process of Al Fe alloy under centrifugal casting has been described much more pertinently. [展开更多
A theoretical model concerning active Q-switching of an Fe:ZnSe laser pumped by a continuous-wave(CW)2.8μm fiber laser is developed.Calculations are compared with the recently reported experiment results,and good agr...A theoretical model concerning active Q-switching of an Fe:ZnSe laser pumped by a continuous-wave(CW)2.8μm fiber laser is developed.Calculations are compared with the recently reported experiment results,and good agreement is achieved.Effects of principal parameters,including pump power,output reflectivity,ion concentration and temperature of crystal,on the laser output performance are investigated and analyzed.Numerical results demonstrate that similar to highly efficient CWFe:ZnSe laser,low temperature of the crystal is significant to obtain high peak power Q-switched pulses.The numerical simulation results are useful for optimizing the design of actively Q-switched Fe:ZnSe laser.展开更多
A method based on the semi-empirical Miedema model and a geometrical model was used to study the glass forming abili-ties (GFA) and the amorphous forming ranges of Al-Fe-Nd-Zr system and its constituent ternary syst...A method based on the semi-empirical Miedema model and a geometrical model was used to study the glass forming abili-ties (GFA) and the amorphous forming ranges of Al-Fe-Nd-Zr system and its constituent ternary systems. The amorphous forming composition ranges were analyzed based on different criteria such asΔGam-ss and PHSS (PHSS=ΔHchem (ΔSC/R)(ΔSσ/R)) for Al-Fe-Nd system. The predicted amorphous forming range was in good agreement with the experimental results. The results showed that the criterion ofΔGam-ss was more accurate, and agreed well with the experiment results. The Gibbs free energy differenceΔGam-ss and pa-rameter PHSS were then used to predict the amorphous forming composition range for the rest of the constitutive ternary systems of Al-Fe-Nd-Zr. In addition, the amorphous forming composition ranges of the (Al-Fe-Zr)100-xNdx (x=50, 60, 70) systems were predicted byΔGam-ss and the modified parameter PHSS. The Gibbs free energy of Al10(Fe1-xZrx)30Nd60 were also calculated. The GFA parameter PHSS indicated that the composition with the highest GFA was Al33.5Fe13.5Zr3Nd50 for the (Al-Fe-Zr)50Nd50 system, Al28.8Fe10Zr1.2Nd60 for the (Al-Fe-Zr)40Nd60 system and Al22.8Fe6.9Zr0.3Nd70 for the (Al-Fe-Zr)30Nd70 system, and the results suggested that those alloys with high content of Al had higher GFA. The appropriate content of neodymium and zirconium resulted in the lower value of PHSS and increased the GFA obviously.展开更多
Hot deformation characteristics of Al-Cu-Mg-Fe-Ni aluminium alloy have been studied in the temperature range 350°C - 450°C and strain rate range 0.001 - 0.4 s-1 using hot compression tests. The experimental ...Hot deformation characteristics of Al-Cu-Mg-Fe-Ni aluminium alloy have been studied in the temperature range 350°C - 450°C and strain rate range 0.001 - 0.4 s-1 using hot compression tests. The experimental results were used to develop a model for predicting the material characteristics during hot deformation. A series of plane-strain compression (PSC) tests were carried out at 950°C and a strain rate of 0.1, 1 and 10 s-1 to several strain levels.展开更多
Ni0.35Zn0.65Fe2O4 ferrite was synthesized by SHS method. In the process of SHS, combustion temperature and velocity were the main process parameters , which were decided by the Fe content, grain size of the ferrite po...Ni0.35Zn0.65Fe2O4 ferrite was synthesized by SHS method. In the process of SHS, combustion temperature and velocity were the main process parameters , which were decided by the Fe content, grain size of the ferrite powder, relative density and the oxygen pressure. In this paper the effects of Fe content, grain size and oxygen pressure on combustion temperature and velocity were discussed. The relation between combustion temperature and magnetic permeability was also studied and the method of polynomial regression was used to establish the mathematical model of the relation.展开更多
A series of {2Fe3S} complexes bearing phosphino thioether chelating ligand were synthesized on the basis of Fe2(Me2pdt)(1,2-Cy2PC6H4SMe)(CO)4 (Me2pdt= Me2C(CH2S )2, 1). The disubstituted Fe(1)Fe(1) compo...A series of {2Fe3S} complexes bearing phosphino thioether chelating ligand were synthesized on the basis of Fe2(Me2pdt)(1,2-Cy2PC6H4SMe)(CO)4 (Me2pdt= Me2C(CH2S )2, 1). The disubstituted Fe(1)Fe(1) compound 1 exhibits a reversible one-electron redox even for [Fe(Ⅰ)Fe(Ⅱ)]+/0 couple. Based on the oxidation of I to [1]+, the tri-substituted [Fe(Ⅰ)Fe(Ⅱ)]+ cationic complex [Fe2/Me2pdt)/1,2-Cy2PC6H4SMe) (PPh3)(CO)3]+ ([2]+) was synthesized. Reduction of [2]+ provided the neutral tri-substituted Fe(l)Fe(1) compound 2. The substitution of the CO in I ligand by PPh3 results in an anodic shift of the Fe11Fe+/Fe1Fe1 couple of470 mV. Most importantly, this substitution also leads to the Fe-Fe bonds in 1 and 2 with large Lewis basicity difference, i.e. △pKaMeCN ~ 10.展开更多
基金Sponsored by National Natural Science Foundation of China (51090381)Foundation of Yunnan Educational Committee of China (2010Z013)
文摘Thermodynamic properties for an alloy system play an important role in the materials science and engineer- ing. Therefore, theoretical calculations having the flexibility to deal with complexity are very useful and have scien- tific meaning. The Hoch-Arpshofen model was deduced from physical principles and is applicable to binary, ternary and larger system using its binary interaction parameters only. Calculations of the activities of Fe-based liquid alloys are calculated using Hoch-Arpshofen model from data on the binary subsystems. Results for the activities for Fe-Au- Ni, Fe-Cr-Ni, Fe-Co-Cr and Fe-Co-Ni systems at required temperature are presented by Hoch-Arpshofen model. The average relative errors of prediction are 7.8%, 4.5%, 4.9~ and 2.7%, respectively. It shows that the calcu- lated results are in good agreement with the experimental data except Fe-Au-Ni system, which exhibits strong inter- action between unlike atoms. The model provides a simple, reliable and general method for calculating the activities for Fe-based liquid alloys.
文摘A self adjusting model was presented on the basis of the effect of temperature gradient on eutectic growth and a curved solid/liquid interface. Finite differential method was adopted to solve the model. The average lamellar spacing of the Al Al 3Fe eutectic alloy and the content fields ahead of the solidifying interface under different growth rates were calculated. Directional solidification experiments were carried out in order to prove the modification of the modeling. The experimental results are in relatively good agreement with the calculations.
文摘A simple modified analytic EAM model for bcc Fe and fcc Al was used to calculate the lattice constant and elastic constants of B2 FeAl and DO3 Fe3Al alloys. The formation energies of vacancy and antisite were also calculated. The present calculations are in agreement with the experimental data and the theoretical results obtained by other authors.
基金supported by the National Natural Sci-ence Foundation of China(50474086)the program for New Century Talents in University(NECT)the Ministry of Education,China.
文摘In the present paper, a numerical modeling was developed to simulate the growth kinetics of ferrite transformed from austenite in Fe-C-∑X (X denotes substitution elements, such as Mn, Ni, Cr etc.) steels by solving the diffusion equation using finite difference method (FDM). Coupled with the kinetic modeling, thermodynamic calculations were carried out to determine the γ/α phase equilibrium conditions using a para-equilibrium (PE) model. The dissipation of free energy for γ→α phase transformation due to the so-called solute drag effect (SDE) was taken into account in the thermodynamic modeling. With this modeling, simulations on the growth kinetics of ferrite in the steels containing austenite-stabilizing and ferrite-stabilizing elements (such as Ni, Mn and Si, Cr, respectively) were performed, which indicates that it deviates from the parabolic growth rate law after the initial stage of transformation. The results were compared with the experimental values given by Bradley and Aaronson, showing that this model has a reasonably good accuracy to predict the growth kinetics of ferrite.
基金Item Sponsored by National Natural Science Foundation of China(50075053)
文摘By introducing aparameter of difference in ferrite formation temperature between binary Fe-C and multicomponent system,and referring to the thermodynamic model for Fe-C binary system,a simplified thermodynamic model for pro-eutectoid ferrite formation in Fe-ΣXiC multicomponent structural steels(Xi=Mn,Si,Mo,Cr,Ni or Ti,etc)was suggested.The comparison of the calculated Ae3 temperatures with the measured data of steels 42 shows that the relative standard deviation and root-mean-square(RMS)error between them are only 0.71% and 8.92 K,respectively.However,the deviations between the same measured data and the values calculated from the superelement model are as high as 1.86% and 23.83 K,respectively.It can be concluded that the simplified thermodynamic model for pro-eutectoid ferrite formation in multicomponent structural steels is acceptable and the calculated Ae3 temperatures are in good agreement with the experimental data.
文摘Coupling with a three dimensional (3D) hydrodynamic model and a suspended solids model, a 3D model for the transport of Fe and Mn in Arha Reservoir, China, was developed. The 3D velocity fields for the flood season are computed to drive the 3D model of Fe and Mn in which the processes of advection, diffusion, redox, sorption, desorption, deposition, and re suspension are included. The model has been calibrated by matching observed fluid, suspended solids, and total concentrations of Fe and Mn in the water column and in the sediment, successively. The model simulated both horizontal and vertical gradients of Fe and Mn in Arha Reservoir. It was found that Fe and especially Mn stratify in accordance with the stratification of DO during summer. The redox cycles across the water sediment interface has a principal role in the rise of Fe and Mn concentrations in the overlying water. It was also found that Fe and Mn loadings from the tributaries have a carryover effect on the water quality through a secondary contamination in the reservoir.
文摘A sub-regular solution model SELFSReM4 used to evaluate activities of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper introduces the application of SELFSReM4 in evaluating activities of the components in C-Mn-Fe-Si system without SiC precipitation.
文摘During the solidification process of binary Al Fe alloy under centrifugal casting, the primary phase of Al 3Fe migrates along the radius because of the density difference between the primary phase and the liquid alloy. Therefore the temperature and concentration field are affected significantly by both the fluid flow and the solid phase migration. In order to take this factor into consideration, a two phase flow numerical model has been established in column coordinate to depict the solidification process of Al Fe alloy under centrifugal casting according to the feature that there exists the solid phase migration during the process. Thus the solidification process of Al Fe alloy under centrifugal casting has been described much more pertinently. [
基金the 2021 Annual Instructional Science and Technology Program of Yongzhou(No.2021YZKJ09)the Science Research Project of Hunan Institute of Science and Technology(No.21xky040)。
文摘A theoretical model concerning active Q-switching of an Fe:ZnSe laser pumped by a continuous-wave(CW)2.8μm fiber laser is developed.Calculations are compared with the recently reported experiment results,and good agreement is achieved.Effects of principal parameters,including pump power,output reflectivity,ion concentration and temperature of crystal,on the laser output performance are investigated and analyzed.Numerical results demonstrate that similar to highly efficient CWFe:ZnSe laser,low temperature of the crystal is significant to obtain high peak power Q-switched pulses.The numerical simulation results are useful for optimizing the design of actively Q-switched Fe:ZnSe laser.
基金Project supported by the National Natural Science Foundation of China(51061004)Science Foundation of Guangxi Education Department(2013YB377)
文摘A method based on the semi-empirical Miedema model and a geometrical model was used to study the glass forming abili-ties (GFA) and the amorphous forming ranges of Al-Fe-Nd-Zr system and its constituent ternary systems. The amorphous forming composition ranges were analyzed based on different criteria such asΔGam-ss and PHSS (PHSS=ΔHchem (ΔSC/R)(ΔSσ/R)) for Al-Fe-Nd system. The predicted amorphous forming range was in good agreement with the experimental results. The results showed that the criterion ofΔGam-ss was more accurate, and agreed well with the experiment results. The Gibbs free energy differenceΔGam-ss and pa-rameter PHSS were then used to predict the amorphous forming composition range for the rest of the constitutive ternary systems of Al-Fe-Nd-Zr. In addition, the amorphous forming composition ranges of the (Al-Fe-Zr)100-xNdx (x=50, 60, 70) systems were predicted byΔGam-ss and the modified parameter PHSS. The Gibbs free energy of Al10(Fe1-xZrx)30Nd60 were also calculated. The GFA parameter PHSS indicated that the composition with the highest GFA was Al33.5Fe13.5Zr3Nd50 for the (Al-Fe-Zr)50Nd50 system, Al28.8Fe10Zr1.2Nd60 for the (Al-Fe-Zr)40Nd60 system and Al22.8Fe6.9Zr0.3Nd70 for the (Al-Fe-Zr)30Nd70 system, and the results suggested that those alloys with high content of Al had higher GFA. The appropriate content of neodymium and zirconium resulted in the lower value of PHSS and increased the GFA obviously.
文摘Hot deformation characteristics of Al-Cu-Mg-Fe-Ni aluminium alloy have been studied in the temperature range 350°C - 450°C and strain rate range 0.001 - 0.4 s-1 using hot compression tests. The experimental results were used to develop a model for predicting the material characteristics during hot deformation. A series of plane-strain compression (PSC) tests were carried out at 950°C and a strain rate of 0.1, 1 and 10 s-1 to several strain levels.
文摘Ni0.35Zn0.65Fe2O4 ferrite was synthesized by SHS method. In the process of SHS, combustion temperature and velocity were the main process parameters , which were decided by the Fe content, grain size of the ferrite powder, relative density and the oxygen pressure. In this paper the effects of Fe content, grain size and oxygen pressure on combustion temperature and velocity were discussed. The relation between combustion temperature and magnetic permeability was also studied and the method of polynomial regression was used to establish the mathematical model of the relation.
基金financial support from the "1000 Youth Talents Plan" the Natural Science Foundation of China (Nos. 21402107, 91427303)IIT Kanpur for funding
文摘A series of {2Fe3S} complexes bearing phosphino thioether chelating ligand were synthesized on the basis of Fe2(Me2pdt)(1,2-Cy2PC6H4SMe)(CO)4 (Me2pdt= Me2C(CH2S )2, 1). The disubstituted Fe(1)Fe(1) compound 1 exhibits a reversible one-electron redox even for [Fe(Ⅰ)Fe(Ⅱ)]+/0 couple. Based on the oxidation of I to [1]+, the tri-substituted [Fe(Ⅰ)Fe(Ⅱ)]+ cationic complex [Fe2/Me2pdt)/1,2-Cy2PC6H4SMe) (PPh3)(CO)3]+ ([2]+) was synthesized. Reduction of [2]+ provided the neutral tri-substituted Fe(l)Fe(1) compound 2. The substitution of the CO in I ligand by PPh3 results in an anodic shift of the Fe11Fe+/Fe1Fe1 couple of470 mV. Most importantly, this substitution also leads to the Fe-Fe bonds in 1 and 2 with large Lewis basicity difference, i.e. △pKaMeCN ~ 10.