Electric towers of high voltage transmission lines are more exposed to natural lightning phenomena thanks to their high heights. These lines are crossed by powerful current sources to dissipate in the ground, which ca...Electric towers of high voltage transmission lines are more exposed to natural lightning phenomena thanks to their high heights. These lines are crossed by powerful current sources to dissipate in the ground, which can, at one time or another, create disturbances or other phenomena can be generated. This is why we have set ourselves the objective of studying the FDTD modeling of the influence of direct lightning strikes on the power transmitted by a High-Voltage power line. To do this, we have implemented Kirchhoff’s laws to model the power transmitted by a High-Voltage power line in a steady state. Calculating the electromagnetic field generated by lightning requires the lightning current along the channel and its spatiotemporal distribution, the bi-exponential models and that of engineers were chosen and used to reproduce the physical phenomena best. Several works have been published in the literature and various mathematical models are proposed, to study the filamentous nature of power lines which has led to a more flexible modelling, based on the transmission line model, associated with the field theory developed from Maxwell’s equations, which explain the interaction between a lightning wave and a power transmission line. The resolution of the line equations in the lightning shock regime was the subject of the FDTD method to obtain the results in the spatio-temporal domain. Through this research, we are interested in the study of the spatiotemporal distribution of the lightning current wave to model the radiated electromagnetic field and to examine the influence of the overvoltage induced by the atmospheric discharge on the transportable power of a High Voltage AC Transmission line, for good selective protection to illuminate the parasites. 2D simulations based on proposed models were developed as well as the verification of the consistency of the different models, by comparing the fractal dimensions of the results of our program with those of the figures obtained experimentally. The aspects developed in this article could have direct implications in practical applications in the engineering and design of high-voltage transmission systems.展开更多
The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficie...The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.展开更多
In this paper, we present a nonorthogonal overlapping Yee method for solv- ing Maxwell's equations using the diagonal split-cell model. When material interface is presented, the diagonal split-cell model does not req...In this paper, we present a nonorthogonal overlapping Yee method for solv- ing Maxwell's equations using the diagonal split-cell model. When material interface is presented, the diagonal split-cell model does not require permittivity averaging so that better accuracy can be achieved. Our numerical results on optical force computation show that the standard FDTD method converges linearly, while the proposed method achieves quadratic convergence and better accuracy.展开更多
Based on the symmetry of the structure, a two-dimensional finite difference time domain (FDTD) method is used to analyze the sleeve monopole antenna on the infinite perfect conductor ground fed by a coaxial line. Th...Based on the symmetry of the structure, a two-dimensional finite difference time domain (FDTD) method is used to analyze the sleeve monopole antenna on the infinite perfect conductor ground fed by a coaxial line. The fields in time domain are then turned into frequency domain through the discrete Fourier Transform to compute the surface current distribution and the input impedance of the sleeve monopole antenna. The gain or pattern of the monopole antenna is also computed, employing the combination of the image theory and the near-to-far transformation in frequency domain. All the computed results agree very well with the results of other methods and measured ones, verifying the application of the FDTD method to analyze the sleeve monopole antennas. The voltage standing wave ratio (VSWR) of the sleeve monopole antennas with different heights and radii of the sleeve are checked to study the influence of the sleeve, which indicates that the height and the radius of the sleeve are both important to the impedance bandwidth of the sleeve monopole antennas.展开更多
The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) b...The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method.展开更多
In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is i...In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is introduced recently.In this paper,a theoretical proof of the stabilityof the three-dimensional(3-D)ADI-FDTD method is presented.It is shown that the 3-D ADI-FDTDmethod is unconditionally stable and free from the CFL condition restraint.展开更多
The interactions of electromagnetic waves with the human body are complex and depend on several factors related to the characteristics of the incident wave, including its frequency, its intensity, the polarization of ...The interactions of electromagnetic waves with the human body are complex and depend on several factors related to the characteristics of the incident wave, including its frequency, its intensity, the polarization of the tissue encountered, the geometry of the tissue and its electromagnetic properties. That’s to say, the dielectric permittivity, the conductivity and the type of coupling between the field and the exposed body. A biological system irradiated by an electromagnetic wave is traversed by induced currents of non-negligible density;the water molecules present in the biological tissues exposed to the electromagnetic field will begin to oscillate at the frequency of the incident wave, thus creating internal friction responsible for the heating of the irradiated tissues. This heating will be all the more important as the tissues are rich in water. This article presents the establishment from a mathematical and numerical analysis explaining the phenomena of interaction and consequences between electromagnetic waves and health. Since the total electric field in the biological system is unknown, that is why it can be determined by the Finite Difference Time Domain FDTD method to assess the electromagnetic power distribution in the biological system under study. For this purpose, the detailed on the mechanisms of interaction of microwave electromagnetic waves with the human body have been presented. Mathematical analysis using Maxwell’s equations as well as bio-heat equations is the basis of this study for a consistent result. Therefore, a thermal model of biological tissues based on an electrical analogy has been developed. By the principle of duality, an electrical model in the dielectric form of a multilayered human tissue was used in order to obtain a corresponding thermal model. This thermal model made it possible to evaluate the temperature profile of biological tissues during exposure to electromagnetic waves. The simulation results obtained from computer tools show that the temperature in the biological tissue is a linear function of the duration of exposure to microwave electromagnetic waves.展开更多
The analysis of electromagnetic propagation in a dispersive medium is complicated in the time-domain because its dielectric constant is frequency-dependent. In this paper, the dielectric constant of the dispersive med...The analysis of electromagnetic propagation in a dispersive medium is complicated in the time-domain because its dielectric constant is frequency-dependent. In this paper, the dielectric constant of the dispersive medium is written as a rational polynomial function, and the relationship between D and E is derived in the time-domain. It is referred to as the shift operator finite-different time-domain (SO-FDTD) method. Compared to an analytical solution and a piecewise linear current density recursive convolution (PLJERC) solution, the high accuracy and efl%iency of this method is verified by calculating the reflectance of the electromagnetic wave through a cold plasma slab. As the electron density in plasma is distributed as the Epstein formula, the effect of distribution grads and electron collision frequency on the reflectance is calculated by using the SO-FDTD method. The result shows that the increase in the distribution grads coefficient affects the reflectance sharply. When it comes to a smaller distribution grads coelBcient, the increase of the collision frequency showed a significant effect on the reflectance, but on the contrary, there is actually less and less effect till it disappears.展开更多
By use of finite-difference time-domain (FDTD) method,an eigenmode analysis in a multiwaveguide structure is presented.Because of difference in propagation constants of different modes,coupling effect is discussed for...By use of finite-difference time-domain (FDTD) method,an eigenmode analysis in a multiwaveguide structure is presented.Because of difference in propagation constants of different modes,coupling effect is discussed for three and five waveguide systems.The field distribution in multiwaveguides is given.展开更多
The objective of this paper is to design a microstrip patch antenna for the miniature electro-capsule communicating with external recorder at 915MHz located in Industry, Science, and Medical (ISM) bands. Microstrip an...The objective of this paper is to design a microstrip patch antenna for the miniature electro-capsule communicating with external recorder at 915MHz located in Industry, Science, and Medical (ISM) bands. Microstrip antenna design parameters, resonance characteristics and radiation patterns are evaluated using the finite-difference time-domain (FDTD) method. The effects of location of feed point and human body are analyzed, and the radiation performances of the proposed antenna are estimated in terms of radiation patterns. Finally, specific absorption rate (SAR) computations are also performed, and the peak 1-g and 10-g SAR values are calculated. According to peak SAR values, the maximum delivered power for the designed antenna was found so that the SAR values of the antennas satisfy ANSI limitations.展开更多
In this paper, we are interested on studying the Multi-transmission Lines, the analysis is ensured by the FDTD (finite difference temporal domain) method combined with the ABC (absorbing boundary conditions) to pr...In this paper, we are interested on studying the Multi-transmission Lines, the analysis is ensured by the FDTD (finite difference temporal domain) method combined with the ABC (absorbing boundary conditions) to predict the current and voltage behavior resulting from the electromagnetic fields all along lines. Simulated results will be compared to commercial software to validate the proposed algorithm.展开更多
Recent decades have seen rapid advances in the field of electrical engineering, such that our environment has become a sea of electrical and magnetic signals, raising questions about the possible effects of low-freque...Recent decades have seen rapid advances in the field of electrical engineering, such that our environment has become a sea of electrical and magnetic signals, raising questions about the possible effects of low-frequency electromagnetic fields on the environment and which are capable of modifying and destroying our ecosystem. Particular interest was given in this article due to a massive influx of population living near high voltage lines. The analysis and simulation of the influence of low frequency electromagnetic fields on living beings in the vicinity of high voltage sources 132 kV and 220 kV in urban areas in DR Congo is the subject of our research with a view to estimating the level of exposure of humans to low frequency electromagnetic fields. To carry out our research, we used the classic method of analyzing the field produced near a high voltage line based on Maxwell’s image theory, the Maxwell-Gauss theorem and Maxwell-Ampère theorem to model and quantify low-frequency electromagnetic fields in the vicinity of high-voltage lines. The 2D FDTD numerical formulation was developed from telegraphers’ equations and allowed us to obtain models of current and voltage induced by electromagnetic fields on living beings below and near HV lines. The different simulations carried out on the proposed models illustrate the effects of the electrical and geometric parameters of the pylons on the distribution of the electromagnetic field in the vicinity of the HV lines. The results obtained were compared to the safety limits recommended by the standards.展开更多
The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidanc...The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidance system.This paper presents a new method that uses the Finite Difference Time Domain(FDTD)method to calculate the electrical performance of radomes under Thermo-Mechanical-Electrical(TME)coupling.This method can accurately characterize the effects of material dielectric temperature drift and structural deformation on the electrical performance of the radome under flight conditions,enabling high-precision full-wave calculations of the broadband electrical performance of the radome.The method initiates by utilizing a Finite Element Grid Model(FE-GM)of the radome to sequentially acquire the radome's response temperature field and structural deformation field through thermal and mechanical simulations.Subsequently,spatial mapping techniques are developed to accurately incorporate the dielectric temperature drift and structural deformation of the radome into its Yee grid Electromagnetic(EM)simulation model.A verification case was designed to test the proposed method,and the results confirmed its high computational accuracy.Additionally,the effectiveness and necessity of the method were further demonstrated by analyzing the electrical performance of a fused silica ceramic radome used on a high-speed aircraft.展开更多
We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedoma...We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedomain (FDTD) method. The relation between the frequency of the incident electromagnetic (EM) wave and the attenuation caused by unmagnitized plasma is analyzed. The results demonstrate that the amount of absorbed power is a decreasing function of the EM wave frequency and the plasma collision frequency. For THz band incident wave, the attenuation that is caused by plasma is small when the plasma has common density and the collision frequency. This conclusion has fine applying foreground for plasma anti stealth.展开更多
A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) me...A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; e. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases.展开更多
Aim To calculate and analyze the near field distribution of ariborne short wave antenna. Methods B-spline method was used to get the mathermatital model of a Boeing 707320Baircraft and simulate its short wave antenna ...Aim To calculate and analyze the near field distribution of ariborne short wave antenna. Methods B-spline method was used to get the mathermatital model of a Boeing 707320Baircraft and simulate its short wave antenna . FDTD (finite-difference time-domain) method are ed tO complete the calculation and analysis. Results The near field distributions on aircraft's surface were obtained, the curve and gray figures of the normalized near field value were shown. Conclusion These modeling and calculating methods can provide data foraircraft's EMC analysis and design.展开更多
The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are...The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder. In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.展开更多
Security monitoring system of coal mines is indispensable to ensure the safe and efficient production of colliery. Due to the special and narrow underground field of the coal mine, the electromagnetic interference can...Security monitoring system of coal mines is indispensable to ensure the safe and efficient production of colliery. Due to the special and narrow underground field of the coal mine, the electromagnetic interference can cause a series of misstatements and false positives on the monitoring system, which will severely hamper the safe production of coal industry. In this paper, first, the frequency characteristics of the interference source on the power line are extracted when equipment runs normally. Then the finite difference time domain method is introduced to analyze the effects of the electromagnetic interference parameters on the security monitoring signal line. And the interference voltage of the two terminal sides on the single line is taken as evaluating indexes. Finally, the electromagnetic interference parameters are optimized by orthogonal experimental design based on the MATLAB simulation on the normal operation of equipment.展开更多
A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain ...A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The discharge characteristics at an input microwave power of 1200 W and a filling gas pressure of 50 Pa in the SWP source are analyzed. The simulation shows the time evolution of deposited power density at different stages, and the 3D distributions of electron density and temperature in the chamber at steady state. In addition, the results show that there is a peak of plasma density approximately at a vertical distance of 3 cm from the quartz window.展开更多
A three-dimensional model of a surface-wave plasma (SWP) source is built numerically using the finite-difference time-domain (FDTD) method to investigate the structure of the surface wave propagation along the pla...A three-dimensional model of a surface-wave plasma (SWP) source is built numerically using the finite-difference time-domain (FDTD) method to investigate the structure of the surface wave propagation along the plasma-dielectric interface and the distributions of electromagnetic fields in the whole system. A good-performance excitation source technique for the waveguide which is pivotal to the simulation is presented. The technique can avoid the dc distortions of magnetic fields caused by the forcing electric wall. An example of simulation is given to confirm the existence of the surface waves. The simulation also shows that the code developed is a useful tool in the computer-aided design of the antenna of the SWP source.展开更多
文摘Electric towers of high voltage transmission lines are more exposed to natural lightning phenomena thanks to their high heights. These lines are crossed by powerful current sources to dissipate in the ground, which can, at one time or another, create disturbances or other phenomena can be generated. This is why we have set ourselves the objective of studying the FDTD modeling of the influence of direct lightning strikes on the power transmitted by a High-Voltage power line. To do this, we have implemented Kirchhoff’s laws to model the power transmitted by a High-Voltage power line in a steady state. Calculating the electromagnetic field generated by lightning requires the lightning current along the channel and its spatiotemporal distribution, the bi-exponential models and that of engineers were chosen and used to reproduce the physical phenomena best. Several works have been published in the literature and various mathematical models are proposed, to study the filamentous nature of power lines which has led to a more flexible modelling, based on the transmission line model, associated with the field theory developed from Maxwell’s equations, which explain the interaction between a lightning wave and a power transmission line. The resolution of the line equations in the lightning shock regime was the subject of the FDTD method to obtain the results in the spatio-temporal domain. Through this research, we are interested in the study of the spatiotemporal distribution of the lightning current wave to model the radiated electromagnetic field and to examine the influence of the overvoltage induced by the atmospheric discharge on the transportable power of a High Voltage AC Transmission line, for good selective protection to illuminate the parasites. 2D simulations based on proposed models were developed as well as the verification of the consistency of the different models, by comparing the fractal dimensions of the results of our program with those of the figures obtained experimentally. The aspects developed in this article could have direct implications in practical applications in the engineering and design of high-voltage transmission systems.
基金The project was supported by the National Natural Science Foundation of China (60471002) and the Jiangxi ProvincialNatural Science Foundation (0412014)
文摘The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.
基金supported by the Air Force Office of Scientific Research (AFOSR) under Grant numbers FA9550-04-1-0213 and FA9550-07-1-0010
文摘In this paper, we present a nonorthogonal overlapping Yee method for solv- ing Maxwell's equations using the diagonal split-cell model. When material interface is presented, the diagonal split-cell model does not require permittivity averaging so that better accuracy can be achieved. Our numerical results on optical force computation show that the standard FDTD method converges linearly, while the proposed method achieves quadratic convergence and better accuracy.
基金Supported by the National High Technology and Development Program of China(2001AA631050)
文摘Based on the symmetry of the structure, a two-dimensional finite difference time domain (FDTD) method is used to analyze the sleeve monopole antenna on the infinite perfect conductor ground fed by a coaxial line. The fields in time domain are then turned into frequency domain through the discrete Fourier Transform to compute the surface current distribution and the input impedance of the sleeve monopole antenna. The gain or pattern of the monopole antenna is also computed, employing the combination of the image theory and the near-to-far transformation in frequency domain. All the computed results agree very well with the results of other methods and measured ones, verifying the application of the FDTD method to analyze the sleeve monopole antennas. The voltage standing wave ratio (VSWR) of the sleeve monopole antennas with different heights and radii of the sleeve are checked to study the influence of the sleeve, which indicates that the height and the radius of the sleeve are both important to the impedance bandwidth of the sleeve monopole antennas.
基金National Natural Science Foundation of China (No. 60471002) and the Natural Science Foundation ofJiangxi Province (No. 0412014)
文摘The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20010614003)
文摘In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is introduced recently.In this paper,a theoretical proof of the stabilityof the three-dimensional(3-D)ADI-FDTD method is presented.It is shown that the 3-D ADI-FDTDmethod is unconditionally stable and free from the CFL condition restraint.
文摘The interactions of electromagnetic waves with the human body are complex and depend on several factors related to the characteristics of the incident wave, including its frequency, its intensity, the polarization of the tissue encountered, the geometry of the tissue and its electromagnetic properties. That’s to say, the dielectric permittivity, the conductivity and the type of coupling between the field and the exposed body. A biological system irradiated by an electromagnetic wave is traversed by induced currents of non-negligible density;the water molecules present in the biological tissues exposed to the electromagnetic field will begin to oscillate at the frequency of the incident wave, thus creating internal friction responsible for the heating of the irradiated tissues. This heating will be all the more important as the tissues are rich in water. This article presents the establishment from a mathematical and numerical analysis explaining the phenomena of interaction and consequences between electromagnetic waves and health. Since the total electric field in the biological system is unknown, that is why it can be determined by the Finite Difference Time Domain FDTD method to assess the electromagnetic power distribution in the biological system under study. For this purpose, the detailed on the mechanisms of interaction of microwave electromagnetic waves with the human body have been presented. Mathematical analysis using Maxwell’s equations as well as bio-heat equations is the basis of this study for a consistent result. Therefore, a thermal model of biological tissues based on an electrical analogy has been developed. By the principle of duality, an electrical model in the dielectric form of a multilayered human tissue was used in order to obtain a corresponding thermal model. This thermal model made it possible to evaluate the temperature profile of biological tissues during exposure to electromagnetic waves. The simulation results obtained from computer tools show that the temperature in the biological tissue is a linear function of the duration of exposure to microwave electromagnetic waves.
基金supported by National Natural Science Foundation of China(Nos.60271005 and 60431010)the National Science Fund for Distinguished Young Scholars of China(No.60325103)
文摘The analysis of electromagnetic propagation in a dispersive medium is complicated in the time-domain because its dielectric constant is frequency-dependent. In this paper, the dielectric constant of the dispersive medium is written as a rational polynomial function, and the relationship between D and E is derived in the time-domain. It is referred to as the shift operator finite-different time-domain (SO-FDTD) method. Compared to an analytical solution and a piecewise linear current density recursive convolution (PLJERC) solution, the high accuracy and efl%iency of this method is verified by calculating the reflectance of the electromagnetic wave through a cold plasma slab. As the electron density in plasma is distributed as the Epstein formula, the effect of distribution grads and electron collision frequency on the reflectance is calculated by using the SO-FDTD method. The result shows that the increase in the distribution grads coefficient affects the reflectance sharply. When it comes to a smaller distribution grads coelBcient, the increase of the collision frequency showed a significant effect on the reflectance, but on the contrary, there is actually less and less effect till it disappears.
文摘By use of finite-difference time-domain (FDTD) method,an eigenmode analysis in a multiwaveguide structure is presented.Because of difference in propagation constants of different modes,coupling effect is discussed for three and five waveguide systems.The field distribution in multiwaveguides is given.
文摘The objective of this paper is to design a microstrip patch antenna for the miniature electro-capsule communicating with external recorder at 915MHz located in Industry, Science, and Medical (ISM) bands. Microstrip antenna design parameters, resonance characteristics and radiation patterns are evaluated using the finite-difference time-domain (FDTD) method. The effects of location of feed point and human body are analyzed, and the radiation performances of the proposed antenna are estimated in terms of radiation patterns. Finally, specific absorption rate (SAR) computations are also performed, and the peak 1-g and 10-g SAR values are calculated. According to peak SAR values, the maximum delivered power for the designed antenna was found so that the SAR values of the antennas satisfy ANSI limitations.
文摘In this paper, we are interested on studying the Multi-transmission Lines, the analysis is ensured by the FDTD (finite difference temporal domain) method combined with the ABC (absorbing boundary conditions) to predict the current and voltage behavior resulting from the electromagnetic fields all along lines. Simulated results will be compared to commercial software to validate the proposed algorithm.
文摘Recent decades have seen rapid advances in the field of electrical engineering, such that our environment has become a sea of electrical and magnetic signals, raising questions about the possible effects of low-frequency electromagnetic fields on the environment and which are capable of modifying and destroying our ecosystem. Particular interest was given in this article due to a massive influx of population living near high voltage lines. The analysis and simulation of the influence of low frequency electromagnetic fields on living beings in the vicinity of high voltage sources 132 kV and 220 kV in urban areas in DR Congo is the subject of our research with a view to estimating the level of exposure of humans to low frequency electromagnetic fields. To carry out our research, we used the classic method of analyzing the field produced near a high voltage line based on Maxwell’s image theory, the Maxwell-Gauss theorem and Maxwell-Ampère theorem to model and quantify low-frequency electromagnetic fields in the vicinity of high-voltage lines. The 2D FDTD numerical formulation was developed from telegraphers’ equations and allowed us to obtain models of current and voltage induced by electromagnetic fields on living beings below and near HV lines. The different simulations carried out on the proposed models illustrate the effects of the electrical and geometric parameters of the pylons on the distribution of the electromagnetic field in the vicinity of the HV lines. The results obtained were compared to the safety limits recommended by the standards.
文摘The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidance system.This paper presents a new method that uses the Finite Difference Time Domain(FDTD)method to calculate the electrical performance of radomes under Thermo-Mechanical-Electrical(TME)coupling.This method can accurately characterize the effects of material dielectric temperature drift and structural deformation on the electrical performance of the radome under flight conditions,enabling high-precision full-wave calculations of the broadband electrical performance of the radome.The method initiates by utilizing a Finite Element Grid Model(FE-GM)of the radome to sequentially acquire the radome's response temperature field and structural deformation field through thermal and mechanical simulations.Subsequently,spatial mapping techniques are developed to accurately incorporate the dielectric temperature drift and structural deformation of the radome into its Yee grid Electromagnetic(EM)simulation model.A verification case was designed to test the proposed method,and the results confirmed its high computational accuracy.Additionally,the effectiveness and necessity of the method were further demonstrated by analyzing the electrical performance of a fused silica ceramic radome used on a high-speed aircraft.
基金the National Natural Science Foundation of China (60771017)the China Postdoctoral ScienceFoundation (20060390272)
文摘We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedomain (FDTD) method. The relation between the frequency of the incident electromagnetic (EM) wave and the attenuation caused by unmagnitized plasma is analyzed. The results demonstrate that the amount of absorbed power is a decreasing function of the EM wave frequency and the plasma collision frequency. For THz band incident wave, the attenuation that is caused by plasma is small when the plasma has common density and the collision frequency. This conclusion has fine applying foreground for plasma anti stealth.
基金National Nature Science Foundation of China(No.90405004)
文摘A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; e. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases.
文摘Aim To calculate and analyze the near field distribution of ariborne short wave antenna. Methods B-spline method was used to get the mathermatital model of a Boeing 707320Baircraft and simulate its short wave antenna . FDTD (finite-difference time-domain) method are ed tO complete the calculation and analysis. Results The near field distributions on aircraft's surface were obtained, the curve and gray figures of the normalized near field value were shown. Conclusion These modeling and calculating methods can provide data foraircraft's EMC analysis and design.
基金supported by the National Natural Science Foundation of China(Nos.10672017 and 10632020).supports provided by the China Postdoctoral Science Foundation,Heilongjiang Province Postdoctoral Science Foundation
文摘The wave propagation is studied in two-dimensional disordered piezoelectric phononic crystals using the finite-difference time-domain (FDTD) method. For different cases of disorder, the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder. In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.
文摘Security monitoring system of coal mines is indispensable to ensure the safe and efficient production of colliery. Due to the special and narrow underground field of the coal mine, the electromagnetic interference can cause a series of misstatements and false positives on the monitoring system, which will severely hamper the safe production of coal industry. In this paper, first, the frequency characteristics of the interference source on the power line are extracted when equipment runs normally. Then the finite difference time domain method is introduced to analyze the effects of the electromagnetic interference parameters on the security monitoring signal line. And the interference voltage of the two terminal sides on the single line is taken as evaluating indexes. Finally, the electromagnetic interference parameters are optimized by orthogonal experimental design based on the MATLAB simulation on the normal operation of equipment.
基金Project supported by the Special Fund of National High-Tech Development and Research Plan (Grant No 2008AA12A214)
文摘A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The discharge characteristics at an input microwave power of 1200 W and a filling gas pressure of 50 Pa in the SWP source are analyzed. The simulation shows the time evolution of deposited power density at different stages, and the 3D distributions of electron density and temperature in the chamber at steady state. In addition, the results show that there is a peak of plasma density approximately at a vertical distance of 3 cm from the quartz window.
文摘A three-dimensional model of a surface-wave plasma (SWP) source is built numerically using the finite-difference time-domain (FDTD) method to investigate the structure of the surface wave propagation along the plasma-dielectric interface and the distributions of electromagnetic fields in the whole system. A good-performance excitation source technique for the waveguide which is pivotal to the simulation is presented. The technique can avoid the dc distortions of magnetic fields caused by the forcing electric wall. An example of simulation is given to confirm the existence of the surface waves. The simulation also shows that the code developed is a useful tool in the computer-aided design of the antenna of the SWP source.