A new method to reduce the numerical dispersion of the three-dimensional Alternating Di-rection Implicit Finite-Difference Time-Domain (3-D ADI-FDTD) method is proposed. Firstly,the numerical formulations of the 3-D A...A new method to reduce the numerical dispersion of the three-dimensional Alternating Di-rection Implicit Finite-Difference Time-Domain (3-D ADI-FDTD) method is proposed. Firstly,the numerical formulations of the 3-D ADI-FDTD method are modified with the artificial anisotropy,and the new numerical dispersion relation is derived. Secondly,the relative permittivity tensor of the artificial anisotropy can be obtained by the Adaptive Genetic Algorithm (AGA). In order to demon-strate the accuracy and efficiency of this new method,a monopole antenna is simulated as an exam-ple. And the numerical results and the computational requirements of the proposed method are com-pared with those of the conventional ADI-FDTD method and the measured data. In addition the re-duction of the numerical dispersion is investigated as the objective function of the AGA. It is found that this new method is accurate and efficient by choosing proper objective function.展开更多
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D tra...An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.展开更多
基金the National Natural Science Foundation of China (No. 60271012)Research Foundation of ZTE Corporation.
文摘A new method to reduce the numerical dispersion of the three-dimensional Alternating Di-rection Implicit Finite-Difference Time-Domain (3-D ADI-FDTD) method is proposed. Firstly,the numerical formulations of the 3-D ADI-FDTD method are modified with the artificial anisotropy,and the new numerical dispersion relation is derived. Secondly,the relative permittivity tensor of the artificial anisotropy can be obtained by the Adaptive Genetic Algorithm (AGA). In order to demon-strate the accuracy and efficiency of this new method,a monopole antenna is simulated as an exam-ple. And the numerical results and the computational requirements of the proposed method are com-pared with those of the conventional ADI-FDTD method and the measured data. In addition the re-duction of the numerical dispersion is investigated as the objective function of the AGA. It is found that this new method is accurate and efficient by choosing proper objective function.
基金supported by the National Natural Science Foundation of China(Grant Nos.61331007 and 61471105)
文摘An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.