Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame...Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.展开更多
The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution an...The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution and short wavelength.Efficient and compact 193 nm DUV laser source thus becomes a hot research area.Currently,193 nm Ar F excimer gas laser is widely employed in DUV lithography systems and serves as the enabling technology for 7 and 5 nm semiconductor fabrication.展开更多
The FDR automatic soil moisture sensor must determine reference frequency in the air and water. Experimental studies show that the water reference frequency is influenced by water temperature. The variation of the ref...The FDR automatic soil moisture sensor must determine reference frequency in the air and water. Experimental studies show that the water reference frequency is influenced by water temperature. The variation of the reference frequency of the sensor is measured with the change of the water temperature,then analysis the influence of the volume water content measurement of the sensor,analysis found that the error is not more than 3% for the measurement of the volumetric water content of the temperature.展开更多
To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau ...To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring.展开更多
Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains...Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.展开更多
Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatical...Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatically mine available SFO resources.An essential aspect of constructing SFO-KG is the extraction of Chinese entity relations.Unfortunately,there is currently no publicly available Chinese SFO entity Relation Extraction(RE)dataset.Moreover,publicly available SFO text data contain numerous NA(representing for“No Answer”)relation category sentences that resemble other relation sentences and pose challenges in accurate classification,resulting in low recall and precision for the NA relation category in entity RE.Consequently,this issue adversely affects both the accuracy of constructing the knowledge graph and the efficiency of RE processes.To address these challenges,this paper proposes a method for extracting Chinese SFO text entity relations based on dynamic integrated learning.This method includes the construction of a manually annotated Chinese SFO entity RE dataset and a classifier combining features of SFO resource data.The proposed approach combines integrated learning and pre-training models,specifically utilizing Bidirectional Encoder Representation from Transformers(BERT).In addition,it incorporates one-class classification,attention mechanisms,and dynamic feedback mechanisms to improve the performance of the RE model.Experimental results show that the proposed method outperforms the traditional methods in terms of F1 value when extracting entity relations from both balanced and long-tailed datasets.展开更多
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct...Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.展开更多
Although eye problems can occur at any age, they are often common from the age of 40. Eye diseases with a prevalence associated with age and aging will continue to increase in the coming years. Most studies conducted ...Although eye problems can occur at any age, they are often common from the age of 40. Eye diseases with a prevalence associated with age and aging will continue to increase in the coming years. Most studies conducted on problems in middle-aged people have focused on visual disorders without taking into account all the ocular morbidities that may affect this segment of the population, hence the present study, the aim of which is to determine the proportions of different eye diseases in people aged 40 and over. Materials and Methods: This was a descriptive cross-sectional study carried out in the ophthalmology department covering the period from January 1 to December 31, 2020. Results: In total, we collected 828 patients aged 40 and over out of 1811 patients who received ophthalmological consultation during the study period, representing 45.72%. The most represented age group was 40 - 50 years, with an average age of 58.84 years and a maximum of 93 years. There were slightly more women (62.3%) than men (37.7%). The main reasons for consultation were decreased visual acuity (26.4%) and pruritus (19.9%). The main eye diseases diagnosed were cataracts (23%), allergic conjunctivitis (21.1%), and bacterial conjunctivitis (14.2%). Discussions: The predominance of cataracts in the diagnosed diseases confirms the literature data, according to which the main eye morbidities in middle-aged and elderly people are cataracts, glaucoma, and age-related macular degeneration. Conclusion: It is crucial to have a mastery of these epidemiological data of eye diseases in order to adapt the technical platforms of eye care structures to the needs of different segments of the population.展开更多
The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and f...The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and frequency-step disturbance scenario are considered.Thus,the advantages of flexible regulation of renewable generations are wasted,resulting in excessive curtailment of wind and solar resources.In this study,a method for optimizing the frequency regulation reserve of wind PV storage power stations was developed.Moreover,a station frequency regulation model was constructed,considering the field dynamic response and the coupling between the station and system frequency dynamics.Furthermore,a method for the online evaluation of the station frequency regulation was proposed based on the benchmark governor fitting.This method helps in overcoming the capacity-based reserve static setting.Finally,an optimization model was developed,along with the proposal of the linearized solving algorithm.The field data from the JH4#station in China’s MX power grid was considered for validation.The proposed method achieves a 24.77%increase in the station income while ensuring the system frequency stability when compared with the grid code-based method.展开更多
As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inve...As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink.展开更多
Vortex-induced vibration of hydrofoils is concerned with structural safety and noise level in hydraulic machinery and marine engineering.The research on vibration characteristics under different operating conditions i...Vortex-induced vibration of hydrofoils is concerned with structural safety and noise level in hydraulic machinery and marine engineering.The research on vibration characteristics under different operating conditions is significant.In this study,numerical simulations are conducted to investigate the vortex-induced vibration responses of an elastically suspended hydrofoil with blunt trailing edge in pitch direction.The work studies the effects of four parameters,namely the structural natural frequency,mass ratio,initial attack angle,and Reynolds number on vibration characteristics,with special emphasis on frequency lock-in.Results indicate that as the structural natural frequency changes,the vibration amplitude may increase substantially within a certain frequency range,in which the vortex shedding frequency locks into the structural natural frequency,and frequency lock-in occurs.In addition,with increasing the mass ratio,the frequency range of lock-in becomes narrower,and both the upper and lower thresholds decrease.As the initial attack angle increases from 0◦to 6◦,the lock-in range gets reduced.Over the three Reynolds numbers(6×10^(5),9×10^(5),and 12×10^(5)),the lock-in range remains virtually unchanged.Moreover,for a certain structural natural frequency,modifying the mass ratio,initial attack angle,and Reynolds number could effectively suppress the vibration amplitude.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
To explore the electrostatic discharge behavior of charged powders in industrial silos,discharge experiments are conducted based on a full-size industrial silo discharge platform.Electrostatic discharge mode,frequency...To explore the electrostatic discharge behavior of charged powders in industrial silos,discharge experiments are conducted based on a full-size industrial silo discharge platform.Electrostatic discharge mode,frequency,and energy are investigated for powders of different polarities.Although the powders have low charge-to-mass ratios(+0.087μC/kg for the positively charged powders and−0.26μC/kg for the negatively charged ones),electrostatic discharges occur approximately every 10 s,with the maximum discharge energy being 800 mJ.Powder polarity considerably influences discharge energy.The positive powders exhibit higher discharge energy than the negative ones,although discharge frequency remains similar for both.Effects of powder charge,humidity,and mass flow on discharge frequency and discharge energy are quantitatively analyzed,providing important insights for the improvement of safety in industrial powder handling.展开更多
Delineation of hydrocarbon-bearing sands and the extent of accumulation using seismic data is a reoccurring challenge for many fields.This study addressed the existing challenges of delineating a known hydrocarbon reg...Delineation of hydrocarbon-bearing sands and the extent of accumulation using seismic data is a reoccurring challenge for many fields.This study addressed the existing challenges of delineating a known hydrocarbon region for a thin-pay reservoir using conventional attributes extraction methods.The efficacy of applying iso-frequency extraction and spectral frequency blending in identifying thin-pay and thick-pay reservoirs on seismic was tested by utilizing 3D seismic data and well logs data of Terra field in the Western Niger Delta Basin.Well tops of all the reservoirs in the field were picked and two reservoirs that correspond to thin-and thick-pay reservoirs,namely A and F were identified respectively.The gross pay thickness of reservoir A is 18 ft while that of reservoir F is 96 ft.Conventional attribute extraction such as RMS amplitude,minimum amplitude,and average energy can be used to identify the hydrocarbon-bearing region in reservoir F but was not applicable for identifying the thin-pay reservoir A.This prompted the interest of using iso-frequency extractions and spectral frequency blending of three iso-frequency cubes of 12 Hz,30 Hz,and 70 Hz to get a spectral frequency RGB cube.The 12 Hz isofrequency can be used to partially identify hydrocarbon-bearing region in reservoir A while the 30Hz iso-frequency can be used to partially identify hydrocarbon-bearing region in reservoir F.The results show that time slices from the spectral frequency blended cube were able to delineate both the thin-pay and thick-pay hydrocarbon-bearing regions as high amplitude.The extractions also conformed to the structure of the two reservoirs.However,there seems to be a color difference in the amplitude display for both reservoirs.The thick-pay reservoir showed a red color on the time slice while the thin-pay reservoir showed a green color.This study has shown that spectral frequency blending is a more effective tool than conventional attributes extractions in identifying hydrocarbon-bearing region using seismic data.The methodology utilized in this study can be applied to other fields with similar challenges and for identifying prospective hydrocarbon bearing areas.展开更多
Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency informatio...Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency information,which makes them ineffective in balancing users’long-and short-term preferences.At the same time,manymethods overlook the potential of frequency domainmethods,ignoring their efficiency in processing frequency information.To overcome this limitation,we shift the focus to the combination of time and frequency domains and propose a novel Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation,namely HyTiFRec.Specifically,we design two hybrid filter modules:the learnable hybrid filter(LHF)and the window hybrid filter(WHF).We combine these with the Efficient Attention(EA)module to form the dual-branch structure to replace the self-attention components in Transformers.The EAmodule is used to extract sequential and global information.The LHF andWHF modules balance the proportion of different frequency bands,with LHF globally modulating the spectrum in the frequency domain and WHF retaining frequency components within specific local frequency bands.Furthermore,we use a time domain residual information addition operation in the hybrid filter module,which reduces information loss and further facilitates the hybrid of time-frequency methods.Extensive experiments on five widely-used real-world datasets show that our proposed method surpasses state-of-the-art methods.展开更多
Cross-regional high voltage direct current(HVDC)systems bring remarkable renewable power injections to the receiver side of power grids.However,HVDC failures result in large disturbances to receivers and cause critica...Cross-regional high voltage direct current(HVDC)systems bring remarkable renewable power injections to the receiver side of power grids.However,HVDC failures result in large disturbances to receivers and cause critical frequency security problems.High renewable energy penetration also reduces the system inertia and damping coefficients.Thus,some nodal frequency nadirs may be much lower than those calculated by the center-of-inertia(COI)and may trigger low-frequency protection.Energy storage is a promising solution for frequency-related problems.In this study,we build an energy storage planning model considering both COI and nodal frequency security constraints.The energy storage capacities and locations are determined in the planning scheme based on year-round operations.First,we carry out a year-round COI-frequency-constrained unit commitment to obtain comprehensive operation modes.Next,we propose a hybrid data-model driven approach to generate nodal frequency security constraints for extensive operation modes effectively.Finally,we achieve optimal energy storage planning with both COI and nodal frequency constraints.Case studies on a modified RTS-79 test system and a 1089-bus power system in practical in Jiangsu,China,verify the effectiveness of the proposed methods.展开更多
We theoretically demonstrate that multipartite entanglement and one-way Einstein-Podolsky-Rosen(EPR)steering in a magnon frequency comb(MFC)can be generated in a hybrid magnon-skyrmion system.When the system is driven...We theoretically demonstrate that multipartite entanglement and one-way Einstein-Podolsky-Rosen(EPR)steering in a magnon frequency comb(MFC)can be generated in a hybrid magnon-skyrmion system.When the system is driven by two microwave fields at the magnonic whispering gallery mode(m WGM)and the skyrmion,the skyrmion can be simultaneously entangled with three magnon modes of the MFC and the entanglement of the first-order magnon pair in the MFC also appears.The results show that the perfect one-way steering between the skyrmion and the three magnons can be obtained.Interestingly,the steering direction can be manipulated by controlling the amplitudes of two drive fields,which provides flexibility in controlling the asymmetry of the EPR steering and may well have practical applications.Moreover,the genuine tripartite entanglement among the skyrmion and the first-order magnon pair can be achieved with appropriate parameters in the steady state.Our work exhibits that the MFC has great potential in preparing multi-mode entanglement resources,with promising applications in quantum communication.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.72161034).
文摘Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.
基金supported by the National Natural Science Foundation of China(Grant Nos.62450006,62304217,62274157,62127807,62234011,62034008,62074142,62074140)Tianshan Innovation Team Program(Grant No.2022TSYCTD0005)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0880000)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant Nos.2023124,Y2023032)。
文摘The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution and short wavelength.Efficient and compact 193 nm DUV laser source thus becomes a hot research area.Currently,193 nm Ar F excimer gas laser is widely employed in DUV lithography systems and serves as the enabling technology for 7 and 5 nm semiconductor fabrication.
文摘The FDR automatic soil moisture sensor must determine reference frequency in the air and water. Experimental studies show that the water reference frequency is influenced by water temperature. The variation of the reference frequency of the sensor is measured with the change of the water temperature,then analysis the influence of the volume water content measurement of the sensor,analysis found that the error is not more than 3% for the measurement of the volumetric water content of the temperature.
基金The National Natural Science Foundation of China(No.52278303).
文摘To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring.
基金supported by the Beijing Natural Science Foundation(5252014)the National Natural Science Foundation of China(62303063)。
文摘Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.
文摘Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatically mine available SFO resources.An essential aspect of constructing SFO-KG is the extraction of Chinese entity relations.Unfortunately,there is currently no publicly available Chinese SFO entity Relation Extraction(RE)dataset.Moreover,publicly available SFO text data contain numerous NA(representing for“No Answer”)relation category sentences that resemble other relation sentences and pose challenges in accurate classification,resulting in low recall and precision for the NA relation category in entity RE.Consequently,this issue adversely affects both the accuracy of constructing the knowledge graph and the efficiency of RE processes.To address these challenges,this paper proposes a method for extracting Chinese SFO text entity relations based on dynamic integrated learning.This method includes the construction of a manually annotated Chinese SFO entity RE dataset and a classifier combining features of SFO resource data.The proposed approach combines integrated learning and pre-training models,specifically utilizing Bidirectional Encoder Representation from Transformers(BERT).In addition,it incorporates one-class classification,attention mechanisms,and dynamic feedback mechanisms to improve the performance of the RE model.Experimental results show that the proposed method outperforms the traditional methods in terms of F1 value when extracting entity relations from both balanced and long-tailed datasets.
基金supported by the National Natural Science Foundation of China(Project No.52377082)the Scientific Research Program of Jilin Provincial Department of Education(Project No.JJKH20230123KJ).
文摘Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.
文摘Although eye problems can occur at any age, they are often common from the age of 40. Eye diseases with a prevalence associated with age and aging will continue to increase in the coming years. Most studies conducted on problems in middle-aged people have focused on visual disorders without taking into account all the ocular morbidities that may affect this segment of the population, hence the present study, the aim of which is to determine the proportions of different eye diseases in people aged 40 and over. Materials and Methods: This was a descriptive cross-sectional study carried out in the ophthalmology department covering the period from January 1 to December 31, 2020. Results: In total, we collected 828 patients aged 40 and over out of 1811 patients who received ophthalmological consultation during the study period, representing 45.72%. The most represented age group was 40 - 50 years, with an average age of 58.84 years and a maximum of 93 years. There were slightly more women (62.3%) than men (37.7%). The main reasons for consultation were decreased visual acuity (26.4%) and pruritus (19.9%). The main eye diseases diagnosed were cataracts (23%), allergic conjunctivitis (21.1%), and bacterial conjunctivitis (14.2%). Discussions: The predominance of cataracts in the diagnosed diseases confirms the literature data, according to which the main eye morbidities in middle-aged and elderly people are cataracts, glaucoma, and age-related macular degeneration. Conclusion: It is crucial to have a mastery of these epidemiological data of eye diseases in order to adapt the technical platforms of eye care structures to the needs of different segments of the population.
基金supported by the Scientific Research Project of China Three Gorges Group Co.LTD(Contract Number:202103368).
文摘The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and frequency-step disturbance scenario are considered.Thus,the advantages of flexible regulation of renewable generations are wasted,resulting in excessive curtailment of wind and solar resources.In this study,a method for optimizing the frequency regulation reserve of wind PV storage power stations was developed.Moreover,a station frequency regulation model was constructed,considering the field dynamic response and the coupling between the station and system frequency dynamics.Furthermore,a method for the online evaluation of the station frequency regulation was proposed based on the benchmark governor fitting.This method helps in overcoming the capacity-based reserve static setting.Finally,an optimization model was developed,along with the proposal of the linearized solving algorithm.The field data from the JH4#station in China’s MX power grid was considered for validation.The proposed method achieves a 24.77%increase in the station income while ensuring the system frequency stability when compared with the grid code-based method.
基金supported by the Key Scientific and Technological Projects(2024KJGG27)of Tianfu Yongxing Laboratorythe Experimental Platform Open Innovation Funding(209042025003)of Sichuan Energy Internet Research Institute,Tsinghua University.
文摘As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink.
基金the National Natural Science Foundation of China(Nos.52171316 and 51479116)。
文摘Vortex-induced vibration of hydrofoils is concerned with structural safety and noise level in hydraulic machinery and marine engineering.The research on vibration characteristics under different operating conditions is significant.In this study,numerical simulations are conducted to investigate the vortex-induced vibration responses of an elastically suspended hydrofoil with blunt trailing edge in pitch direction.The work studies the effects of four parameters,namely the structural natural frequency,mass ratio,initial attack angle,and Reynolds number on vibration characteristics,with special emphasis on frequency lock-in.Results indicate that as the structural natural frequency changes,the vibration amplitude may increase substantially within a certain frequency range,in which the vortex shedding frequency locks into the structural natural frequency,and frequency lock-in occurs.In addition,with increasing the mass ratio,the frequency range of lock-in becomes narrower,and both the upper and lower thresholds decrease.As the initial attack angle increases from 0◦to 6◦,the lock-in range gets reduced.Over the three Reynolds numbers(6×10^(5),9×10^(5),and 12×10^(5)),the lock-in range remains virtually unchanged.Moreover,for a certain structural natural frequency,modifying the mass ratio,initial attack angle,and Reynolds number could effectively suppress the vibration amplitude.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
基金The National Natural Science Foundation of China(No.51976039)。
文摘To explore the electrostatic discharge behavior of charged powders in industrial silos,discharge experiments are conducted based on a full-size industrial silo discharge platform.Electrostatic discharge mode,frequency,and energy are investigated for powders of different polarities.Although the powders have low charge-to-mass ratios(+0.087μC/kg for the positively charged powders and−0.26μC/kg for the negatively charged ones),electrostatic discharges occur approximately every 10 s,with the maximum discharge energy being 800 mJ.Powder polarity considerably influences discharge energy.The positive powders exhibit higher discharge energy than the negative ones,although discharge frequency remains similar for both.Effects of powder charge,humidity,and mass flow on discharge frequency and discharge energy are quantitatively analyzed,providing important insights for the improvement of safety in industrial powder handling.
文摘Delineation of hydrocarbon-bearing sands and the extent of accumulation using seismic data is a reoccurring challenge for many fields.This study addressed the existing challenges of delineating a known hydrocarbon region for a thin-pay reservoir using conventional attributes extraction methods.The efficacy of applying iso-frequency extraction and spectral frequency blending in identifying thin-pay and thick-pay reservoirs on seismic was tested by utilizing 3D seismic data and well logs data of Terra field in the Western Niger Delta Basin.Well tops of all the reservoirs in the field were picked and two reservoirs that correspond to thin-and thick-pay reservoirs,namely A and F were identified respectively.The gross pay thickness of reservoir A is 18 ft while that of reservoir F is 96 ft.Conventional attribute extraction such as RMS amplitude,minimum amplitude,and average energy can be used to identify the hydrocarbon-bearing region in reservoir F but was not applicable for identifying the thin-pay reservoir A.This prompted the interest of using iso-frequency extractions and spectral frequency blending of three iso-frequency cubes of 12 Hz,30 Hz,and 70 Hz to get a spectral frequency RGB cube.The 12 Hz isofrequency can be used to partially identify hydrocarbon-bearing region in reservoir A while the 30Hz iso-frequency can be used to partially identify hydrocarbon-bearing region in reservoir F.The results show that time slices from the spectral frequency blended cube were able to delineate both the thin-pay and thick-pay hydrocarbon-bearing regions as high amplitude.The extractions also conformed to the structure of the two reservoirs.However,there seems to be a color difference in the amplitude display for both reservoirs.The thick-pay reservoir showed a red color on the time slice while the thin-pay reservoir showed a green color.This study has shown that spectral frequency blending is a more effective tool than conventional attributes extractions in identifying hydrocarbon-bearing region using seismic data.The methodology utilized in this study can be applied to other fields with similar challenges and for identifying prospective hydrocarbon bearing areas.
基金supported by a grant from the Natural Science Foundation of Zhejiang Province under Grant LY21F010016.
文摘Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency information,which makes them ineffective in balancing users’long-and short-term preferences.At the same time,manymethods overlook the potential of frequency domainmethods,ignoring their efficiency in processing frequency information.To overcome this limitation,we shift the focus to the combination of time and frequency domains and propose a novel Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation,namely HyTiFRec.Specifically,we design two hybrid filter modules:the learnable hybrid filter(LHF)and the window hybrid filter(WHF).We combine these with the Efficient Attention(EA)module to form the dual-branch structure to replace the self-attention components in Transformers.The EAmodule is used to extract sequential and global information.The LHF andWHF modules balance the proportion of different frequency bands,with LHF globally modulating the spectrum in the frequency domain and WHF retaining frequency components within specific local frequency bands.Furthermore,we use a time domain residual information addition operation in the hybrid filter module,which reduces information loss and further facilitates the hybrid of time-frequency methods.Extensive experiments on five widely-used real-world datasets show that our proposed method surpasses state-of-the-art methods.
基金supported in part by the National Natural Science Foundation of China(No.52177093)in part by the Scientific&technical project of China Electric Power Planning&Engineering Institute(K202317).
文摘Cross-regional high voltage direct current(HVDC)systems bring remarkable renewable power injections to the receiver side of power grids.However,HVDC failures result in large disturbances to receivers and cause critical frequency security problems.High renewable energy penetration also reduces the system inertia and damping coefficients.Thus,some nodal frequency nadirs may be much lower than those calculated by the center-of-inertia(COI)and may trigger low-frequency protection.Energy storage is a promising solution for frequency-related problems.In this study,we build an energy storage planning model considering both COI and nodal frequency security constraints.The energy storage capacities and locations are determined in the planning scheme based on year-round operations.First,we carry out a year-round COI-frequency-constrained unit commitment to obtain comprehensive operation modes.Next,we propose a hybrid data-model driven approach to generate nodal frequency security constraints for extensive operation modes effectively.Finally,we achieve optimal energy storage planning with both COI and nodal frequency constraints.Case studies on a modified RTS-79 test system and a 1089-bus power system in practical in Jiangsu,China,verify the effectiveness of the proposed methods.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1402802)the National Natural Science Foundation of China(Grant Nos.12374103,12434003,and 12074057)。
文摘We theoretically demonstrate that multipartite entanglement and one-way Einstein-Podolsky-Rosen(EPR)steering in a magnon frequency comb(MFC)can be generated in a hybrid magnon-skyrmion system.When the system is driven by two microwave fields at the magnonic whispering gallery mode(m WGM)and the skyrmion,the skyrmion can be simultaneously entangled with three magnon modes of the MFC and the entanglement of the first-order magnon pair in the MFC also appears.The results show that the perfect one-way steering between the skyrmion and the three magnons can be obtained.Interestingly,the steering direction can be manipulated by controlling the amplitudes of two drive fields,which provides flexibility in controlling the asymmetry of the EPR steering and may well have practical applications.Moreover,the genuine tripartite entanglement among the skyrmion and the first-order magnon pair can be achieved with appropriate parameters in the steady state.Our work exhibits that the MFC has great potential in preparing multi-mode entanglement resources,with promising applications in quantum communication.