The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.H...The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.However,the adverse effects of false data injection(FDI)attacks on the performance of LLMs cannot be overlooked.Therefore,we propose an FDI attack detection and LLM-assisted resource allocation algorithm for 6G edge intelligenceempowered distribution power grids.First,we formulate a resource allocation optimization problem.The objective is to minimize the weighted sum of the global loss function and total LLM fine-tuning delay under constraints of long-term privacy entropy and energy consumption.Then,we decouple it based on virtual queues.We utilize an LLM-assisted deep Q network(DQN)to learn the resource allocation strategy and design an FDI attack detection mechanism to ensure that fine-tuning remains on the correct path.Simulations demonstrate that the proposed algorithm has excellent performance in convergence,delay,and security.展开更多
This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional m...This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.展开更多
针对含有虚假数据注入(false data injection, FDI)攻击和传感器故障的异构互联信息物理系统,研究分布式攻击估计器设计问题.首先,将系统状态和传感器故障增广成等价的广义状态空间模型,利用该模型和子系统间的关联信息设计分布式攻击...针对含有虚假数据注入(false data injection, FDI)攻击和传感器故障的异构互联信息物理系统,研究分布式攻击估计器设计问题.首先,将系统状态和传感器故障增广成等价的广义状态空间模型,利用该模型和子系统间的关联信息设计分布式攻击估计观测器.在分布式观测器的设计中,引入中间变量和输出估计误差反馈项,使观测器具有灵活的参数矩阵结构,适用于不同状态维度子系统组成的异构系统,实现对攻击信号和传感器故障的同时估计.其次,对动态误差系统进行稳定性分析,利用H∞性能来抑制攻击信号和外部干扰对估计效果的影响,同时以线性矩阵不等式的形式给出观测器增益矩阵的求解方法.最后,通过数值仿真和对比仿真验证所提攻击估计方法的可行性.展开更多
从攻击者的角度探讨信息物理系统(Cyber-physical system,CPS)中隐蔽虚假数据注入(False data injection,FDI)攻击的最优策略.选取Kullback-Leibler(K-L)散度作为攻击隐蔽性的评价指标,设计攻击信号使得攻击保持隐蔽且最大程度地降低CP...从攻击者的角度探讨信息物理系统(Cyber-physical system,CPS)中隐蔽虚假数据注入(False data injection,FDI)攻击的最优策略.选取Kullback-Leibler(K-L)散度作为攻击隐蔽性的评价指标,设计攻击信号使得攻击保持隐蔽且最大程度地降低CPS远程状态估计的性能.首先,利用残差的统计特征计算远程状态估计误差协方差,将FDI最优策略问题转化为二次约束优化问题.其次,在攻击隐蔽性的约束下,运用拉格朗日乘子法及半正定规划推导出最优策略.最后,通过仿真实验验证所提方法与现有方法相比在隐蔽性方面具有显著优势.展开更多
研究带宽受限下信息物理系统中虚假数据注入(false data injection,FDI)攻击的检测问题.首先,将执行器遭受的FDI攻击信号建模为系统的未知输入信号,基于给定的H∞性能指标,设计局部残差产生器以实时逼近攻击信号.其次,为提高检测系统预...研究带宽受限下信息物理系统中虚假数据注入(false data injection,FDI)攻击的检测问题.首先,将执行器遭受的FDI攻击信号建模为系统的未知输入信号,基于给定的H∞性能指标,设计局部残差产生器以实时逼近攻击信号.其次,为提高检测系统预警速度,在分布式融合框架下将所有经对数量化后的残差信号发送至检测中心,并设计优化目标将分布式加权融合准则的求解问题转化为线性矩阵不等式形式下的凸优化问题.与单个传感器情况下的检测方法相比,基于分布式融合方法所确定的检测阈值更加精准,从而可大幅度提高对攻击信号的预警速度.最后,通过移动目标系统的仿真验证所提方法的有效性.展开更多
This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the meas...This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the measurement residuals of partial sensors due to limited attack resources,is proposed to maximally degrade system estimation performance.The attack stealthiness condition is given,and then the estimation error covariance in compromised state is derived to quantify the system performance under attack.The optimal attack strategy is obtained by solving several convex optimization problems which maximize the trace of the compromised estimation error covariance subject to the stealthiness condition.Moreover,due to the constraint of attack resources,the selection principle of the attacked sensor is provided to determine which sensor is attacked so as to hold the most impact on system performance.Finally,simulation results are presented to verify the theoretical analysis.展开更多
Networked Control Systems (NCSs) have been implemented in several different industries. The integration with advanced communication networks and computing techniques allows for the enhancement of efficiency of industr...Networked Control Systems (NCSs) have been implemented in several different industries. The integration with advanced communication networks and computing techniques allows for the enhancement of efficiency of industrial control systems. Despite all the advantages that NCSs bring to industry, they remain at risk to a spectrum of physical and cyber-attacks. In this paper, we elaborate on security vulnerabilities of NCSs, and examine how these vulnerabilities may be exploited when attacks occur. A general model of NCS designed with three different controllers, i.e., proportional-integral-derivative (PID) controllers, Model Predictive control (MPC) and Emotional Learning Controller (ELC) are studied. Then three different types of attacks are applied to evaluate the system performance. For the case study, a networked pacemaker system using the Zeeman nonlinear heart model (ZHM) as the plant combined with the above-mentioned controllers to test the system performance when under attacks. The results show that with Emotional Learning Controller (ELC), the pacemaker is able to track the ECG signal with high fidelity even under different attack scenarios.展开更多
针对复杂协同攻击下一类非线性系统的状态估计问题,提出一种分布式一致性递推滤波算法.首先,将拒绝服务攻击(denial of service, DoS)和虚假数据注入攻击(false data injection, FDI)现象描述为两个随机Bernoulli序列,并利用统一的框架...针对复杂协同攻击下一类非线性系统的状态估计问题,提出一种分布式一致性递推滤波算法.首先,将拒绝服务攻击(denial of service, DoS)和虚假数据注入攻击(false data injection, FDI)现象描述为两个随机Bernoulli序列,并利用统一的框架建立包含DoS和FDI的复杂协同攻击模型;然后,基于一致性理论设计具有分布式结构的递推滤波器,计算最优滤波器增益,并推导该滤波器估计误差满足均方有界的充分必要条件;最后,利用室内机器人的定位问题进行验证,仿真结果验证了所提出滤波器算法的有效性.展开更多
工业控制系统(Industrial Control System,ICS)的安全保障能力与其关乎国计民生的重要地位,具有极不协调的反差。为了揭示ICS潜在的攻击结构和方法,使得ICS防御策略研究更具实用性和针对性,将虚假数据注入(False Data Injection,FDI)攻...工业控制系统(Industrial Control System,ICS)的安全保障能力与其关乎国计民生的重要地位,具有极不协调的反差。为了揭示ICS潜在的攻击结构和方法,使得ICS防御策略研究更具实用性和针对性,将虚假数据注入(False Data Injection,FDI)攻击研究面向ICS,建立一种隐蔽的FDI攻击模型,可以在不影响ICS正常通信情况下注入虚假数据篡改监控变量。遵循该攻击模型,在煤制甲醇仿真工厂进行了验证实验,证明威胁切实存在,且难以察觉;同时,分析了威胁的严重性并讨论了防御措施。展开更多
基于自适应网络的分布式参数估计近年来受到了日益广泛的关注。现有的分布式参数估计算法尽管在无攻击的安全网络中表现良好,但在遭受如虚假数据注入(false data injection, FDI)攻击的对抗网络中,由攻击者注入的虚假数据(也称恶意数据...基于自适应网络的分布式参数估计近年来受到了日益广泛的关注。现有的分布式参数估计算法尽管在无攻击的安全网络中表现良好,但在遭受如虚假数据注入(false data injection, FDI)攻击的对抗网络中,由攻击者注入的虚假数据(也称恶意数据)会随着节点间的通信和协作在网络中扩散,导致算法估计性能的恶化。若算法不能从攻击中快速恢复估计性能(即算法对攻击不具有弹性),则可能导致严重的后果。为此,简要介绍了弹性分布式参数估计算法所解决的基本问题及基本算法原理;从FDI攻击检测和弹性参数估计策略2个方面,系统地总结了近年来弹性分布式参数估计算法的研究进展,并分析了其在遭受FDI攻击的对抗网络中的性能;最后,探讨了现有弹性分布式参数估计算法的发展趋势和未来潜在的研究方向。展开更多
研究在虚假数据注入(false data injection,FDI)攻击下带有过程噪声的多智能体系统的均方二分一致性问题.考虑智能体间的合作与竞争交互,在卡尔曼滤波框架下设计一种新颖的能够估计邻居智能体状态的算法,并从理论上证明算法的稳定性.与...研究在虚假数据注入(false data injection,FDI)攻击下带有过程噪声的多智能体系统的均方二分一致性问题.考虑智能体间的合作与竞争交互,在卡尔曼滤波框架下设计一种新颖的能够估计邻居智能体状态的算法,并从理论上证明算法的稳定性.与同类算法相比,该算法考虑了估计器测量范围内和测量范围外智能体的相关性.实验结果表明,相较于局部卡尔曼滤波算法,所提出估计算法具有更好的估计性能.在此基础上提出一种基于状态估计算法的安全保护机制,使智能体的状态更新能采用安全值,从而消除FDI攻击的影响,保障系统能够渐近实现均方二分一致性.最后通过数值实验对理论结果进行验证.展开更多
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant Number 52094021N010(5400-202199534A-0-5-ZN).
文摘The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.However,the adverse effects of false data injection(FDI)attacks on the performance of LLMs cannot be overlooked.Therefore,we propose an FDI attack detection and LLM-assisted resource allocation algorithm for 6G edge intelligenceempowered distribution power grids.First,we formulate a resource allocation optimization problem.The objective is to minimize the weighted sum of the global loss function and total LLM fine-tuning delay under constraints of long-term privacy entropy and energy consumption.Then,we decouple it based on virtual queues.We utilize an LLM-assisted deep Q network(DQN)to learn the resource allocation strategy and design an FDI attack detection mechanism to ensure that fine-tuning remains on the correct path.Simulations demonstrate that the proposed algorithm has excellent performance in convergence,delay,and security.
基金supported in part by Shanghai Rising-Star Program,China under grant 22QA1409400in part by National Natural Science Foundation of China under grant 62473287 and 62088101in part by Shanghai Municipal Science and Technology Major Project under grant 2021SHZDZX0100.
文摘This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.
文摘针对含有虚假数据注入(false data injection, FDI)攻击和传感器故障的异构互联信息物理系统,研究分布式攻击估计器设计问题.首先,将系统状态和传感器故障增广成等价的广义状态空间模型,利用该模型和子系统间的关联信息设计分布式攻击估计观测器.在分布式观测器的设计中,引入中间变量和输出估计误差反馈项,使观测器具有灵活的参数矩阵结构,适用于不同状态维度子系统组成的异构系统,实现对攻击信号和传感器故障的同时估计.其次,对动态误差系统进行稳定性分析,利用H∞性能来抑制攻击信号和外部干扰对估计效果的影响,同时以线性矩阵不等式的形式给出观测器增益矩阵的求解方法.最后,通过数值仿真和对比仿真验证所提攻击估计方法的可行性.
文摘从攻击者的角度探讨信息物理系统(Cyber-physical system,CPS)中隐蔽虚假数据注入(False data injection,FDI)攻击的最优策略.选取Kullback-Leibler(K-L)散度作为攻击隐蔽性的评价指标,设计攻击信号使得攻击保持隐蔽且最大程度地降低CPS远程状态估计的性能.首先,利用残差的统计特征计算远程状态估计误差协方差,将FDI最优策略问题转化为二次约束优化问题.其次,在攻击隐蔽性的约束下,运用拉格朗日乘子法及半正定规划推导出最优策略.最后,通过仿真实验验证所提方法与现有方法相比在隐蔽性方面具有显著优势.
文摘研究带宽受限下信息物理系统中虚假数据注入(false data injection,FDI)攻击的检测问题.首先,将执行器遭受的FDI攻击信号建模为系统的未知输入信号,基于给定的H∞性能指标,设计局部残差产生器以实时逼近攻击信号.其次,为提高检测系统预警速度,在分布式融合框架下将所有经对数量化后的残差信号发送至检测中心,并设计优化目标将分布式加权融合准则的求解问题转化为线性矩阵不等式形式下的凸优化问题.与单个传感器情况下的检测方法相比,基于分布式融合方法所确定的检测阈值更加精准,从而可大幅度提高对攻击信号的预警速度.最后,通过移动目标系统的仿真验证所提方法的有效性.
基金supported by the National Natural Science Foundation of China(61925303,62173034,62088101,U20B2073,62173002)the National Key Research and Development Program of China(2021YFB1714800)Beijing Natural Science Foundation(4222045)。
文摘This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the measurement residuals of partial sensors due to limited attack resources,is proposed to maximally degrade system estimation performance.The attack stealthiness condition is given,and then the estimation error covariance in compromised state is derived to quantify the system performance under attack.The optimal attack strategy is obtained by solving several convex optimization problems which maximize the trace of the compromised estimation error covariance subject to the stealthiness condition.Moreover,due to the constraint of attack resources,the selection principle of the attacked sensor is provided to determine which sensor is attacked so as to hold the most impact on system performance.Finally,simulation results are presented to verify the theoretical analysis.
文摘Networked Control Systems (NCSs) have been implemented in several different industries. The integration with advanced communication networks and computing techniques allows for the enhancement of efficiency of industrial control systems. Despite all the advantages that NCSs bring to industry, they remain at risk to a spectrum of physical and cyber-attacks. In this paper, we elaborate on security vulnerabilities of NCSs, and examine how these vulnerabilities may be exploited when attacks occur. A general model of NCS designed with three different controllers, i.e., proportional-integral-derivative (PID) controllers, Model Predictive control (MPC) and Emotional Learning Controller (ELC) are studied. Then three different types of attacks are applied to evaluate the system performance. For the case study, a networked pacemaker system using the Zeeman nonlinear heart model (ZHM) as the plant combined with the above-mentioned controllers to test the system performance when under attacks. The results show that with Emotional Learning Controller (ELC), the pacemaker is able to track the ECG signal with high fidelity even under different attack scenarios.
文摘针对复杂协同攻击下一类非线性系统的状态估计问题,提出一种分布式一致性递推滤波算法.首先,将拒绝服务攻击(denial of service, DoS)和虚假数据注入攻击(false data injection, FDI)现象描述为两个随机Bernoulli序列,并利用统一的框架建立包含DoS和FDI的复杂协同攻击模型;然后,基于一致性理论设计具有分布式结构的递推滤波器,计算最优滤波器增益,并推导该滤波器估计误差满足均方有界的充分必要条件;最后,利用室内机器人的定位问题进行验证,仿真结果验证了所提出滤波器算法的有效性.
文摘工业控制系统(Industrial Control System,ICS)的安全保障能力与其关乎国计民生的重要地位,具有极不协调的反差。为了揭示ICS潜在的攻击结构和方法,使得ICS防御策略研究更具实用性和针对性,将虚假数据注入(False Data Injection,FDI)攻击研究面向ICS,建立一种隐蔽的FDI攻击模型,可以在不影响ICS正常通信情况下注入虚假数据篡改监控变量。遵循该攻击模型,在煤制甲醇仿真工厂进行了验证实验,证明威胁切实存在,且难以察觉;同时,分析了威胁的严重性并讨论了防御措施。
文摘基于自适应网络的分布式参数估计近年来受到了日益广泛的关注。现有的分布式参数估计算法尽管在无攻击的安全网络中表现良好,但在遭受如虚假数据注入(false data injection, FDI)攻击的对抗网络中,由攻击者注入的虚假数据(也称恶意数据)会随着节点间的通信和协作在网络中扩散,导致算法估计性能的恶化。若算法不能从攻击中快速恢复估计性能(即算法对攻击不具有弹性),则可能导致严重的后果。为此,简要介绍了弹性分布式参数估计算法所解决的基本问题及基本算法原理;从FDI攻击检测和弹性参数估计策略2个方面,系统地总结了近年来弹性分布式参数估计算法的研究进展,并分析了其在遭受FDI攻击的对抗网络中的性能;最后,探讨了现有弹性分布式参数估计算法的发展趋势和未来潜在的研究方向。
文摘研究在虚假数据注入(false data injection,FDI)攻击下带有过程噪声的多智能体系统的均方二分一致性问题.考虑智能体间的合作与竞争交互,在卡尔曼滤波框架下设计一种新颖的能够估计邻居智能体状态的算法,并从理论上证明算法的稳定性.与同类算法相比,该算法考虑了估计器测量范围内和测量范围外智能体的相关性.实验结果表明,相较于局部卡尔曼滤波算法,所提出估计算法具有更好的估计性能.在此基础上提出一种基于状态估计算法的安全保护机制,使智能体的状态更新能采用安全值,从而消除FDI攻击的影响,保障系统能够渐近实现均方二分一致性.最后通过数值实验对理论结果进行验证.