期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于FDC-Mamba的关龙胆根茎实例分割与表型参数提取
1
作者
崔红光
刘海涛
+3 位作者
马有泽
黄文忠
李宏博
王铁军
《农业机械学报》
北大核心
2025年第10期500-511,共12页
针对关龙胆根茎中茎痕与残留茎基表型特征高度相似,且根茎尺寸小、形态复杂,导致图像分割特征提取困难、识别精度不足等问题,本文提出了焦点调制-动态检测头-上下文引导-Mamba(Focal Modulation-DyHead seg-Context Guided-Mamba,FDC-Ma...
针对关龙胆根茎中茎痕与残留茎基表型特征高度相似,且根茎尺寸小、形态复杂,导致图像分割特征提取困难、识别精度不足等问题,本文提出了焦点调制-动态检测头-上下文引导-Mamba(Focal Modulation-DyHead seg-Context Guided-Mamba,FDC-Mamba)关龙胆根茎实例分割模型。首先,为解决关龙胆相邻根丝边界模糊、缠绕部位重叠问题,引入目标检测型Mamba(Object detection Mamba,ODMamba)主干网络补充纹理细节,加强结构一致性;其次,通过融合Focal Modulation与Context Guided结构部分,增强多尺度感知能力和细节分割能力;最后,将DyHead结构结合辅助检测头(Auxiliary Head)训练策略,开发一种用于实例分割新训练结构DyHead seg,提高信息传递效率、优化学习过程。与其他常用实例分割模型(YOLO系列、Mask R-CNN、PointRend、HTC、SOLOv2、RT-DETR、HYPER)、不同特征金字塔架构模块(RepBN、AIFI、LSKA)、不同下采样结构模块(SRFD、ADown、CARAFE、EUCB、Gold-YOLO、HWD、PSConv、SODConv、WaveletPool)在关龙胆根茎数据集上进行对比,改进后模型完成了对关龙胆根茎实例分割,在根茎边缘和细小区域定位方面具有更高准确度,Box类型和Mask类型精度P、AP50、AP95分别提升6.52、5.09、5.44个百分点和4.49、2.68、1.16个百分点。基于分割结果,提出了关龙胆根长、根部粗细度、含杂率和色度4种表型参数提取方法。试验结果表明,所提出模型分割精度(Mask类型P)达87.12%,比基线模型高4.49个百分点。关龙胆表型参数提取结果与人工测量结果相对误差均在5%以内。本文对以关龙胆为代表的根茎类中药材表型特征提取具有较高的准确性,可为后续炮制工艺与装备研发奠定基础。
展开更多
关键词
关龙胆
实例分割
表型参数提取
深度学习
fdc-mamba
在线阅读
下载PDF
职称材料
题名
基于FDC-Mamba的关龙胆根茎实例分割与表型参数提取
1
作者
崔红光
刘海涛
马有泽
黄文忠
李宏博
王铁军
机构
沈阳农业大学工程学院
抚顺市农业农村发展服务中心
沈阳农业大学园艺学院
出处
《农业机械学报》
北大核心
2025年第10期500-511,共12页
基金
辽宁高校基本科研业务费项目(LJKMZ20220998)。
文摘
针对关龙胆根茎中茎痕与残留茎基表型特征高度相似,且根茎尺寸小、形态复杂,导致图像分割特征提取困难、识别精度不足等问题,本文提出了焦点调制-动态检测头-上下文引导-Mamba(Focal Modulation-DyHead seg-Context Guided-Mamba,FDC-Mamba)关龙胆根茎实例分割模型。首先,为解决关龙胆相邻根丝边界模糊、缠绕部位重叠问题,引入目标检测型Mamba(Object detection Mamba,ODMamba)主干网络补充纹理细节,加强结构一致性;其次,通过融合Focal Modulation与Context Guided结构部分,增强多尺度感知能力和细节分割能力;最后,将DyHead结构结合辅助检测头(Auxiliary Head)训练策略,开发一种用于实例分割新训练结构DyHead seg,提高信息传递效率、优化学习过程。与其他常用实例分割模型(YOLO系列、Mask R-CNN、PointRend、HTC、SOLOv2、RT-DETR、HYPER)、不同特征金字塔架构模块(RepBN、AIFI、LSKA)、不同下采样结构模块(SRFD、ADown、CARAFE、EUCB、Gold-YOLO、HWD、PSConv、SODConv、WaveletPool)在关龙胆根茎数据集上进行对比,改进后模型完成了对关龙胆根茎实例分割,在根茎边缘和细小区域定位方面具有更高准确度,Box类型和Mask类型精度P、AP50、AP95分别提升6.52、5.09、5.44个百分点和4.49、2.68、1.16个百分点。基于分割结果,提出了关龙胆根长、根部粗细度、含杂率和色度4种表型参数提取方法。试验结果表明,所提出模型分割精度(Mask类型P)达87.12%,比基线模型高4.49个百分点。关龙胆表型参数提取结果与人工测量结果相对误差均在5%以内。本文对以关龙胆为代表的根茎类中药材表型特征提取具有较高的准确性,可为后续炮制工艺与装备研发奠定基础。
关键词
关龙胆
实例分割
表型参数提取
深度学习
fdc-mamba
Keywords
Gentiana scabra Bunge
instance segmentation
phenotype parameter extraction
deep learning
fdc-mamba
分类号
S126 [农业科学—农业基础科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于FDC-Mamba的关龙胆根茎实例分割与表型参数提取
崔红光
刘海涛
马有泽
黄文忠
李宏博
王铁军
《农业机械学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部