This paper proposes a new structure for the FBMC-OQAM(filter bank multicarrier with offset quadrature amplitude modulation)system aiming to reduce computational complexity which is one of the main technical challenges...This paper proposes a new structure for the FBMC-OQAM(filter bank multicarrier with offset quadrature amplitude modulation)system aiming to reduce computational complexity which is one of the main technical challenges faced and tackled by many baseband signal research groups.The new structure depends on the application of the filter bank in the frequency domain instead of the time domain.As a result,this structure provides a low computational complexity compared to the original structure,where only IFFT(Inverse Fast Fourier Transforms)blocks and simple multiplication and addition operations are needed.Simulation results were performed by analyzing the number of multiplication and addition operations,in addition to studying the performance of the FBMC-OQAM system of the new structure by simulating the BER(bit error rate)in terms of SNR(signal-to-noise ratio).展开更多
针对具有偏移正交幅度调制的滤波器组多载波(Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation,FBMC-OQAM)系统中目前存在的定时同步算法问题,提出了一种改进的定时同步算法。该算法利用两个特殊设计的符号,将其...针对具有偏移正交幅度调制的滤波器组多载波(Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation,FBMC-OQAM)系统中目前存在的定时同步算法问题,提出了一种改进的定时同步算法。该算法利用两个特殊设计的符号,将其连续通过FBMC-OQAM系统后在时域形成共轭对称特性的信号。与现有的算法相比,该算法增加了计算相关序列的长度,但减少了训练符号,还去除了高旁瓣带来的干扰。理论分析与仿真结果表明,改进算法具有更好的定时同步性能。展开更多
Filter bank multicarrier(FBMC)systems with offset quadrature amplitude modulation(OQAM)need long data blocks to achieve high spectral efficiency.However,the transmission of long data blocks in underwater acoustic(UWA)...Filter bank multicarrier(FBMC)systems with offset quadrature amplitude modulation(OQAM)need long data blocks to achieve high spectral efficiency.However,the transmission of long data blocks in underwater acoustic(UWA)communication systems often encounters the challenge of time-varying channels.This paper proposes a time-varying channel tracking method for short-range high-rate UWA FBMC-OQAM communication applications.First,a known preamble is used to initialize the channel estimation at the initial time of the signal block.Next,the estimated channel is applied to detect data symbols at several symbol periods.The detected data symbols are then reused as new pilots to estimate the next time channel.In the above steps,the unified transmission matrix model is extended to describe the time-varying channel input-output model in this paper and is used for symbol detection.Simulation results show that the channel tracking error can be reduced to less than−20 dB when the channel temporal coherence coefficient exceeds 0.75 within one block period of FBMC-OQAM signals.Compared with conventional known-pilot-based methods,the proposed method needs lower system overhead while exhibiting similar time-varying channel tracking performance.The sea trial results further proved the practicability of the proposed method.展开更多
Filter bank multi-carrier (FBMC) with offset quadrature amplitude modulation (OQAM) has been regarded as one of the candidates for next generation broadband wireless communication systems. Being a multi-carrier te...Filter bank multi-carrier (FBMC) with offset quadrature amplitude modulation (OQAM) has been regarded as one of the candidates for next generation broadband wireless communication systems. Being a multi-carrier technique, FBMC suffers from the inherent drawback of high peak-to-average power ratio (PAPR). And it has been turned out that conventional PAPR reduction schemes for orthogonal frequency division multiplexing (OFDM) systems are ineffective for FBMC-OQAM systems, due to the overlapping structure of FBMC-OQAM signals. In this paper, we propose an efficient PAPR reduction scheme based on a two-step optimization structure, named pretreated partial transmit sequence (P-PTS). The first step uses a multiple overlapping symbols joint optimization scheme that the phase rotation sequences for current symbol is determined and optimized according to previous overlapped symbols. And in the second step, it employs a novel segment PAPR reduction scheme based on PTS technique. Simulation results indicate that the proposed P-PTS scheme can achieve better PAPR reduction performance than conventional methods with lower computational complexity and the complexity can be traded off more flexibly with PAPR reduction performance.展开更多
With the advent of the Industry 5.0 era,the Internet of Things(IoT)devices face unprecedented proliferation,requiring higher communications rates and lower transmission delays.Considering its high spectrum efficiency,...With the advent of the Industry 5.0 era,the Internet of Things(IoT)devices face unprecedented proliferation,requiring higher communications rates and lower transmission delays.Considering its high spectrum efficiency,the promising filter bank multicarrier(FBMC)technique using offset quadrature amplitude modulation(OQAM)has been applied to Beyond 5G(B5G)industry IoT networks.However,due to the broadcasting nature of wireless channels,the FBMC-OQAMindustry IoT network is inevitably vulnerable to adversary attacks frommalicious IoT nodes.The FBMC-OQAMindustry cognitive radio network(ICRNet)is proposed to ensure security at the physical layer to tackle the above challenge.As a pivotal step of ICRNet,blind modulation recognition(BMR)can detect and recognize the modulation type of malicious signals.The previous works need to accomplish the BMR task of FBMC-OQAM signals in ICRNet nodes.A novel FBMC BMR algorithm is proposed with the transform channel convolution network(TCCNet)rather than a complicated two-dimensional convolution.Firstly,this is achieved by designing a low-complexity binary constellation diagram(BCD)gridding matrix as the input of TCCNet.Then,a transform channel convolution strategy is developed to convert the image-like BCD matrix into a serieslike data format,accelerating the BMR process while keeping discriminative features.Monte Carlo experimental results demonstrate that the proposed TCCNet obtains a performance gain of 8%and 40%over the traditional inphase/quadrature(I/Q)-based and constellation diagram(CD)-based methods at a signal noise ratio(SNR)of 12 dB,respectively.Moreover,the proposed TCCNet can achieve around 29.682 and 2.356 times faster than existing CD-Alex Network(CD-AlexNet)and I/Q-Convolutional Long Deep Neural Network(I/Q-CLDNN)algorithms,respectively.展开更多
水声信道是一个时变的双扩散信道,不仅会引起传输信号的时频扩展,而且会造成严重的信息损失。由于滤波器组多载波/交错正交幅度调制(Filter Bank Based Multicarrier/Offset Quadrature Amplitude Modulation, FBMC/OQAM)系统可通过改...水声信道是一个时变的双扩散信道,不仅会引起传输信号的时频扩展,而且会造成严重的信息损失。由于滤波器组多载波/交错正交幅度调制(Filter Bank Based Multicarrier/Offset Quadrature Amplitude Modulation, FBMC/OQAM)系统可通过改变发送信号的成型脉冲来减小时频扩展带来的符号干扰和子载波干扰,因此更适合快速时变的水下声信道。为了降低现有成型脉冲设计算法的优化难度,提出了一种快速且易于实现的成型脉冲设计方法,该方法根据信道时频统计特性对扩展高斯函数(Extend Gaussian Function, EGF)进行了优化,实现了期望信号能量最大化,并在时域符号间加入适当的保护间隔,进一步增强了抗多途干扰的能力。仿真结果表明,无论在高频散信道还是在低频信道下,相比于其它成型脉冲算法,该算法在降低计算量的同时,改进了的FBMC/OQAM系统的传输性能,误码率降低了2~3 dB。展开更多
文摘This paper proposes a new structure for the FBMC-OQAM(filter bank multicarrier with offset quadrature amplitude modulation)system aiming to reduce computational complexity which is one of the main technical challenges faced and tackled by many baseband signal research groups.The new structure depends on the application of the filter bank in the frequency domain instead of the time domain.As a result,this structure provides a low computational complexity compared to the original structure,where only IFFT(Inverse Fast Fourier Transforms)blocks and simple multiplication and addition operations are needed.Simulation results were performed by analyzing the number of multiplication and addition operations,in addition to studying the performance of the FBMC-OQAM system of the new structure by simulating the BER(bit error rate)in terms of SNR(signal-to-noise ratio).
文摘针对具有偏移正交幅度调制的滤波器组多载波(Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation,FBMC-OQAM)系统中目前存在的定时同步算法问题,提出了一种改进的定时同步算法。该算法利用两个特殊设计的符号,将其连续通过FBMC-OQAM系统后在时域形成共轭对称特性的信号。与现有的算法相比,该算法增加了计算相关序列的长度,但减少了训练符号,还去除了高旁瓣带来的干扰。理论分析与仿真结果表明,改进算法具有更好的定时同步性能。
基金Supported by the National Natural Science Foundation of China under Grant Nos.62171405,62225114 and 62101489.
文摘Filter bank multicarrier(FBMC)systems with offset quadrature amplitude modulation(OQAM)need long data blocks to achieve high spectral efficiency.However,the transmission of long data blocks in underwater acoustic(UWA)communication systems often encounters the challenge of time-varying channels.This paper proposes a time-varying channel tracking method for short-range high-rate UWA FBMC-OQAM communication applications.First,a known preamble is used to initialize the channel estimation at the initial time of the signal block.Next,the estimated channel is applied to detect data symbols at several symbol periods.The detected data symbols are then reused as new pilots to estimate the next time channel.In the above steps,the unified transmission matrix model is extended to describe the time-varying channel input-output model in this paper and is used for symbol detection.Simulation results show that the channel tracking error can be reduced to less than−20 dB when the channel temporal coherence coefficient exceeds 0.75 within one block period of FBMC-OQAM signals.Compared with conventional known-pilot-based methods,the proposed method needs lower system overhead while exhibiting similar time-varying channel tracking performance.The sea trial results further proved the practicability of the proposed method.
基金supported by the Beijing Higher Education Young Elite Teacher Project (YETP0440)the National Natural Science Foundation of China (61272518, 61302083)
文摘Filter bank multi-carrier (FBMC) with offset quadrature amplitude modulation (OQAM) has been regarded as one of the candidates for next generation broadband wireless communication systems. Being a multi-carrier technique, FBMC suffers from the inherent drawback of high peak-to-average power ratio (PAPR). And it has been turned out that conventional PAPR reduction schemes for orthogonal frequency division multiplexing (OFDM) systems are ineffective for FBMC-OQAM systems, due to the overlapping structure of FBMC-OQAM signals. In this paper, we propose an efficient PAPR reduction scheme based on a two-step optimization structure, named pretreated partial transmit sequence (P-PTS). The first step uses a multiple overlapping symbols joint optimization scheme that the phase rotation sequences for current symbol is determined and optimized according to previous overlapped symbols. And in the second step, it employs a novel segment PAPR reduction scheme based on PTS technique. Simulation results indicate that the proposed P-PTS scheme can achieve better PAPR reduction performance than conventional methods with lower computational complexity and the complexity can be traded off more flexibly with PAPR reduction performance.
基金supported by the National Natural Science Foundation of China(Nos.61671095,61371164)the Project of Key Laboratory of Signal and Information Processing of Chongqing(No.CSTC2009CA2003).
文摘With the advent of the Industry 5.0 era,the Internet of Things(IoT)devices face unprecedented proliferation,requiring higher communications rates and lower transmission delays.Considering its high spectrum efficiency,the promising filter bank multicarrier(FBMC)technique using offset quadrature amplitude modulation(OQAM)has been applied to Beyond 5G(B5G)industry IoT networks.However,due to the broadcasting nature of wireless channels,the FBMC-OQAMindustry IoT network is inevitably vulnerable to adversary attacks frommalicious IoT nodes.The FBMC-OQAMindustry cognitive radio network(ICRNet)is proposed to ensure security at the physical layer to tackle the above challenge.As a pivotal step of ICRNet,blind modulation recognition(BMR)can detect and recognize the modulation type of malicious signals.The previous works need to accomplish the BMR task of FBMC-OQAM signals in ICRNet nodes.A novel FBMC BMR algorithm is proposed with the transform channel convolution network(TCCNet)rather than a complicated two-dimensional convolution.Firstly,this is achieved by designing a low-complexity binary constellation diagram(BCD)gridding matrix as the input of TCCNet.Then,a transform channel convolution strategy is developed to convert the image-like BCD matrix into a serieslike data format,accelerating the BMR process while keeping discriminative features.Monte Carlo experimental results demonstrate that the proposed TCCNet obtains a performance gain of 8%and 40%over the traditional inphase/quadrature(I/Q)-based and constellation diagram(CD)-based methods at a signal noise ratio(SNR)of 12 dB,respectively.Moreover,the proposed TCCNet can achieve around 29.682 and 2.356 times faster than existing CD-Alex Network(CD-AlexNet)and I/Q-Convolutional Long Deep Neural Network(I/Q-CLDNN)algorithms,respectively.