期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Satellite-Derived Bathymetry Using a Fast Feature Cascade Learning Model in Turbid Coastal Waters
1
作者 Zhongqiang Wu Yuchen Zhao +4 位作者 Shulei Wu Huong Chen Chunhui Song Zhihua Mao Wei Shen 《Journal of Remote Sensing》 2024年第1期163-177,共15页
Obtaining accurate bathymetric maps is very valuable for marine environment monitoring,port planning,and so on.Accurately estimating water depth in turbid coastal waters using satellite remote sensing encounters chall... Obtaining accurate bathymetric maps is very valuable for marine environment monitoring,port planning,and so on.Accurately estimating water depth in turbid coastal waters using satellite remote sensing encounters challenges originating from low water transparency,but it is limited by the quantity,quality,and water quality of samples.This study introduces a fast feature cascade learning model(FFCLM)to enhance the accuracy of bathymetric inversion from multispectral satellite images,particularly when limited field samples are available.FFCLM leverages spectral bands and in situ data to derive effective inversion weights through feature concatenation and cascade fitting.Field experiments conducted at Nanshan Port and Rushikonda Beach gathered water depth,satellite,and in situ data.Comparative analysis with conventional machine learning algorithms,including support vector machine,random forest,and gradient boosting trees,indicates that FFCLM achieves lower errors and demonstrates more robust performance across study areas.This is especially more pronounced when using small training samples(n<100).Examination of key parameters and water depth profiles highlights FFCLM’s advantages in generalization and deep-water inversion.This study presents an efficient solution for small-sample bathymetric mapping in turbid coastal waters,utilizing spectral and physical information to overcome sample size limitations and enhancing satellite remote sensing capabilities for shallow water monitoring. 展开更多
关键词 obtaining accurate bathymetric maps satellite imagesparticularly bathymetric inversion satellite derived bathymetry estimating water depth marine environment monitoringport planningand fast feature cascade learning model ffclm fast feature cascade learning model
原文传递
Estimation of crowd density from UAVs images based on corner detection procedures and clustering analysis 被引量:2
2
作者 Ali Almagbile 《Geo-Spatial Information Science》 SCIE CSCD 2019年第1期23-34,共12页
With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings,crowd monitoring has taken a considerable attentions in many disciplines such as psychology,sociology,engine... With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings,crowd monitoring has taken a considerable attentions in many disciplines such as psychology,sociology,engineering,and computer vision.This is due to the fact that,monitoring of the crowd is necessary to enhance safety and controllable movements to minimize the risk particularly in highly crowded incidents(e.g.sports).One of the platforms that have been extensively employed in crowd monitoring is unmanned aerial vehicles(UAVs),because UAVs have the capability to acquiring fast,low costs,high-resolution and real-time images over crowd areas.In addition,geo-referenced images can also be provided through integration of on-board positioning sensors(e.g.GPS/IMU)with vision sensors(digital cameras and laser scanner).In this paper,a new testing procedure based on feature from accelerated segment test(FAST)algorithms is introduced to detect the crowd features from UAV images taken from different camera orientations and positions.The proposed test started with converting a circle of 16 pixels surrounding the center pixel into a vector and sorting it in ascending/descending order.A single pixel which takes the ranking number 9(for FAST-9)or 12(for FAST-12)was then compared with the center pixel.Accuracy assessment in terms of completeness and correctness was used to assess the performance of the new testing procedure before and after filtering the crowd features.The results show that the proposed algorithms are able to extract crowd features from different UAV images.Overall,the values of Completeness range from 55 to 70%whereas the range of correctness values was 91 to 94%. 展开更多
关键词 Unmanned Aerial Vehicle(UAV) crowd density corner detection feature from Accelerated Segment Test(fast)algorithm clustering analysis
原文传递
基于Mask R-CNN实例分割及FPFH特征配对的喷涂工件识别方法 被引量:1
3
作者 葛俊辉 王健 +3 位作者 彭以平 李婕瑄 肖昌炎 刘勇 《激光与光电子学进展》 CSCD 北大核心 2022年第14期178-188,共11页
工件识别在柔性化机器人自动喷涂生产线中至关重要,它是机器人切换喷涂轨迹的重要依据。然而,实际应用中,由于喷涂工件尺寸和种类的多样性、表面的弱纹理性、多视异构件及相似件等情况的存在,准确且高效识别喷涂工件充满挑战性。为此,... 工件识别在柔性化机器人自动喷涂生产线中至关重要,它是机器人切换喷涂轨迹的重要依据。然而,实际应用中,由于喷涂工件尺寸和种类的多样性、表面的弱纹理性、多视异构件及相似件等情况的存在,准确且高效识别喷涂工件充满挑战性。为此,提出了一种二维(2D)实例分割与三维特征一致性配对的识别方法,即利用基于小样本训练的Mask R-CNN深度模型对2D工件分割及识别的快速性,再结合fast point feature histogram(FPFH)点云特征对局部细节的强区分性,实现对多视异构件及相似件由粗到精的准确识别。在精识别阶段,提出了一种基于FPFH特征配对的识别方法。该方法以intrinsic shape signature为工件的关键点,以FPFH为矢量特征,通过线性相关度配对FPFH特征,再以拓扑结构及空间变换关系的一致性为约束验证特征的匹配率,以此作为工件识别的评价标准。实验中,采用34种类别1500多个工件进行测试,所提方法的识别率高达99.26%,单工件识别耗时低于1500 ms。 展开更多
关键词 机器视觉 三维视觉感知 工件识别 Mask R-CNN fast point feature histogram特征配对
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部