The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercom...The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.展开更多
The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The goal of FAFMIP is to investigate the spread ...The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO2,including the uncertainties in the simulations of ocean heat uptake,global mean sea level rise due to ocean thermal expansion and dynamic sea level change due to ocean circulation and density changes.The FAFMIP experiments have already been conducted with the Flexible Global Ocean–Atmosphere–Land System Model,gridpoint version 3.0(FGOALS-g3).The model datasets have been submitted to the Earth System Grid Federation(ESGF)node.Here,the details of the experiments,the output variables and some baseline results are presented.Compared with the preliminary results of other models,the evolutions of global mean variables can be reproduced well by FGOALS-g3.The simulations of spatial patterns are also consistent with those of other models in most regions except the North Atlantic and the Southern Ocean,indicating large uncertainties in the regional sea level projections of these two regions.展开更多
基金supported by the National Major Research High Performance Computing Program of China(Grant No.2016YFB0200804)the National Natural Science Foundation of China(Grant Nos.41706036,41706028,41975129 and 41630530)+2 种基金the open fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography(Grant No.QNHX2017)the National Key Scientific and Technological Infrastructure project entitled“Earth System Science Numerical Simulator Facility”(Earth Lab)key operation construction projects of Chongqing Meteorological Bureau"Construction of chongqing short-term climate numerical predic tion platform"。
文摘The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.
基金This study was supported by National Key R&D Program for Developing Basic Sciences(2018YFA0605703)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grants 41976026,41776030 and 41931183,41931182)。
文摘The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO2,including the uncertainties in the simulations of ocean heat uptake,global mean sea level rise due to ocean thermal expansion and dynamic sea level change due to ocean circulation and density changes.The FAFMIP experiments have already been conducted with the Flexible Global Ocean–Atmosphere–Land System Model,gridpoint version 3.0(FGOALS-g3).The model datasets have been submitted to the Earth System Grid Federation(ESGF)node.Here,the details of the experiments,the output variables and some baseline results are presented.Compared with the preliminary results of other models,the evolutions of global mean variables can be reproduced well by FGOALS-g3.The simulations of spatial patterns are also consistent with those of other models in most regions except the North Atlantic and the Southern Ocean,indicating large uncertainties in the regional sea level projections of these two regions.