目的探索超声心动图在鉴别诊断Fabry病和肥厚型心肌病(hypertrophic cardiomyopathy,HCM中的应用价值。方法选择西安交通大学第一附属医院2022年1月—2024年1月收治的Fabry病患者和同期HCM患者基线资料和超声心动图参数并进行组间比较...目的探索超声心动图在鉴别诊断Fabry病和肥厚型心肌病(hypertrophic cardiomyopathy,HCM中的应用价值。方法选择西安交通大学第一附属医院2022年1月—2024年1月收治的Fabry病患者和同期HCM患者基线资料和超声心动图参数并进行组间比较。筛选具有诊断价值的参数,并用受试者操作特征曲线及曲线下面积(area under the curve,AUC)分析有价值的参数以评价对2种疾病的鉴别诊断能力。结果共纳入Fabry病患者16例、HCM患者41例。Fabry病组年龄、体质量指数、心电图异常比例、吸烟史低于HCM组(P<0.05);Fabry病组病史久于HCM组(P<0.05)。Fabry病组左心室心肌最厚处厚度、升主动脉宽度小于HCM组(P<0.05),而e峰值大于HCM组(P<0.05)。e峰的鉴别诊断价值AUC为0.698[95%置信区间(0.502,0.894),P<0.05],灵敏度为41.7%,特异度为100%,Youden指数为41.7%。3者联合应用后,其灵敏度和准确度均较e峰值提高,鉴别诊断价值AUC为0.773[95%置信区间(0.585,0.961),P<0.05],灵敏度为100%,特异度为45.5%。两组患者二维斑点追踪技术超声其他参数(左心室整体纵向应变、心尖段应变、基底段应变等)比较,差异均无统计学意义(P>0.05)。结论超声心动图可能对Fabry病和HCM的鉴别诊断具有一定意义。展开更多
In recent years,machine learning(ML)techniques have been shown to be effective in accelerating the development process of optoelectronic devices.However,as"black box"models,they have limited theoretical inte...In recent years,machine learning(ML)techniques have been shown to be effective in accelerating the development process of optoelectronic devices.However,as"black box"models,they have limited theoretical interpretability.In this work,we leverage symbolic regression(SR)technique for discovering the explicit symbolic relationship between the structure of the optoelectronic Fabry-Perot(FP)laser and its optical field distribution,which greatly improves model transparency compared to ML.We demonstrated that the expressions explored through SR exhibit lower errors on the test set compared to ML models,which suggests that the expressions have better fitting and generalization capabilities.展开更多
A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical mod...A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.展开更多
Fabry disease (FD) is a rare X-linked lysosomal accumulation disorder caused by a deficiency in the enzyme alpha-galactosidase A (Gal A), resulting in excessive storage of glycosphingolipids, particularly globotriaosy...Fabry disease (FD) is a rare X-linked lysosomal accumulation disorder caused by a deficiency in the enzyme alpha-galactosidase A (Gal A), resulting in excessive storage of glycosphingolipids, particularly globotriaosylceramide (Gb3). This leads to cellular dysfunction in various organs, with cardiovascular compromise being the major cause of morbidity and mortality. This study aimed to provide a comprehensive overview of FD focusing on its genetic, epidemiological, clinical, diagnostic, and therapeutic aspects. This study explored the genetic mutations associated with FD, its epidemiology, clinical phenotypes, cardiac manifestations, diagnostic approaches, and current treatment options. Background: FD is caused by mutations in GLA on the X chromosome, with over 1000 identified variants. Neonatal screening and specific studies have shown an increased incidence of FD. The clinical presentation varies between classic and late phenotypes, with cardiac involvement being a major concern, particularly in late-onset FD. Purpose: This study aimed to summarize the current knowledge on FD, emphasizing cardiac involvement, diagnostic modalities, and treatment options. Methods: A literature review of relevant studies on FD, including genetics, epidemiology, clinical presentation, diagnostic methods, and treatment options, was conducted. Results: Cardiac manifestations of FD included left ventricular hypertrophy (LVH), heart failure, arrhythmias, and sudden death. Diagnostic approaches such as electrocardiography, echocardiography, and cardiac magnetic resonance imaging play crucial roles in the early detection and monitoring of cardiac involvement. Enzyme replacement therapy (ERT) and emerging treatments have shown promise in managing FD, although challenges remain. Conclusions: FD remains a challenging condition in cardiology, with under-diagnosis being a concern. Early detection and specific therapy are essential to improve patient outcomes. Echocardiography and cardiac MRI are valuable tools for diagnosis and follow-up. Despite the advances in treatment, accessibility remains an issue. More research is needed to deepen our understanding of FD and to improve therapeutic strategies.展开更多
Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being ne...Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.展开更多
The Fabry–Perot(FP) resonant cavity is widely used in laser and spectroscopic measurements due to its unique interference transfer function(ITF). In the ideal case of parallel incident light, the ITF of the FP resona...The Fabry–Perot(FP) resonant cavity is widely used in laser and spectroscopic measurements due to its unique interference transfer function(ITF). In the ideal case of parallel incident light, the ITF of the FP resonant cavity can be expressed by the Airy function. However, in reality, it is difficult to achieve perfect parallelism with collimated beams. In this article, a theoretical model is established for non-parallel light incidence, which assumes that the non-parallel incident light is a cone-shaped beam, and the cone angle is used to quantify the non-parallelism of the beam. The transmittance function of the FP resonant cavity under non-parallel light incidence is derived. The accuracy of the model is experimentally verified. Based on this model, the effects of divergence angle, tilt angle and FP cavity parameters(reflectivity, cavity length)on the ITF are studied. The reasons for the decrease in peak value, broadening and asymmetry of the interference peak under non-parallel light incidence are explained. It is suggested that a fine balance between the interference peak and the collimation effect of the incident light should be considered in the design and application of FP resonant cavities, especially for tilted applications such as angle-scanned spectroscopy. The research results of this article have certain significance for the design and application of FP resonant cavities.展开更多
Chaos is a type of motion unique to nonlinear dynamical systems,characterized by extreme sensitivity to initial conditions and the randomness,which makes it potentially useful for secure communication.Chaos research r...Chaos is a type of motion unique to nonlinear dynamical systems,characterized by extreme sensitivity to initial conditions and the randomness,which makes it potentially useful for secure communication.Chaos research require a easily controllable chaotic oscillator.Chaotic behavior in optical bistability provides a simple theoretical model.Based on the theoretical model,a novel chaotic oscillator in frequency domain is proposed.The chaotic oscillator is composed of a tunable fiber laser,fiber Fabry⁃Perot interferometer(FFPI)and hybrid delayed feedback loop.The laser itself plays a part in delay time which is induced by PZT device.The chaotic oscillator is realized by experiments and chaos behaviors are observed.The chaos oscillator has the characteristic of simplicity and flexibility.It have potential application value in the field of fiber optical communication encryption.展开更多
文摘目的探索超声心动图在鉴别诊断Fabry病和肥厚型心肌病(hypertrophic cardiomyopathy,HCM中的应用价值。方法选择西安交通大学第一附属医院2022年1月—2024年1月收治的Fabry病患者和同期HCM患者基线资料和超声心动图参数并进行组间比较。筛选具有诊断价值的参数,并用受试者操作特征曲线及曲线下面积(area under the curve,AUC)分析有价值的参数以评价对2种疾病的鉴别诊断能力。结果共纳入Fabry病患者16例、HCM患者41例。Fabry病组年龄、体质量指数、心电图异常比例、吸烟史低于HCM组(P<0.05);Fabry病组病史久于HCM组(P<0.05)。Fabry病组左心室心肌最厚处厚度、升主动脉宽度小于HCM组(P<0.05),而e峰值大于HCM组(P<0.05)。e峰的鉴别诊断价值AUC为0.698[95%置信区间(0.502,0.894),P<0.05],灵敏度为41.7%,特异度为100%,Youden指数为41.7%。3者联合应用后,其灵敏度和准确度均较e峰值提高,鉴别诊断价值AUC为0.773[95%置信区间(0.585,0.961),P<0.05],灵敏度为100%,特异度为45.5%。两组患者二维斑点追踪技术超声其他参数(左心室整体纵向应变、心尖段应变、基底段应变等)比较,差异均无统计学意义(P>0.05)。结论超声心动图可能对Fabry病和HCM的鉴别诊断具有一定意义。
文摘Fabry病(FD)因GLA致病性变异,导致溶酶体α-半乳糖苷酶A(α-Gal A)缺乏和鞘脂类酰基鞘鞍醇三己糖(Gb3)堆积,进一步发生严重的肾脏和心血管等器官并发症。肾脏主要影响足细胞。FD是一种多系统疾病,起源于细胞水平,但Gb3诱导细胞功能障碍的机制还不清楚。澳大利亚学者Sharon D.Ricardo教授团队近期开展了一项工作,旨在明确FD潜在的驱动因素,并探索了FD患者诱导多能干细胞(iPSC)衍生足细胞的潜在细胞病理学。研究结果发表于近期《Kidney International Reports》。
基金supported by the National Natural Science Foundation of China(No.92370117)the CAS Project for Young Scientists in Basic Research(No.YSBR-090)。
文摘In recent years,machine learning(ML)techniques have been shown to be effective in accelerating the development process of optoelectronic devices.However,as"black box"models,they have limited theoretical interpretability.In this work,we leverage symbolic regression(SR)technique for discovering the explicit symbolic relationship between the structure of the optoelectronic Fabry-Perot(FP)laser and its optical field distribution,which greatly improves model transparency compared to ML.We demonstrated that the expressions explored through SR exhibit lower errors on the test set compared to ML models,which suggests that the expressions have better fitting and generalization capabilities.
基金supported in part by the National Natural Science Foundation of China(Nos.61735014 and 61927812)the Shaanxi Provincial Education Department(No.18JS093)+2 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2024JC-YBMS-530)the Operation Fund of Logging Key Laboratory of Group Company(No.2021DQ0107-11)the Graduate Student Innovation Fund of Xi’an Shiyou University(No.YCS23213193)。
文摘A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.
文摘Fabry disease (FD) is a rare X-linked lysosomal accumulation disorder caused by a deficiency in the enzyme alpha-galactosidase A (Gal A), resulting in excessive storage of glycosphingolipids, particularly globotriaosylceramide (Gb3). This leads to cellular dysfunction in various organs, with cardiovascular compromise being the major cause of morbidity and mortality. This study aimed to provide a comprehensive overview of FD focusing on its genetic, epidemiological, clinical, diagnostic, and therapeutic aspects. This study explored the genetic mutations associated with FD, its epidemiology, clinical phenotypes, cardiac manifestations, diagnostic approaches, and current treatment options. Background: FD is caused by mutations in GLA on the X chromosome, with over 1000 identified variants. Neonatal screening and specific studies have shown an increased incidence of FD. The clinical presentation varies between classic and late phenotypes, with cardiac involvement being a major concern, particularly in late-onset FD. Purpose: This study aimed to summarize the current knowledge on FD, emphasizing cardiac involvement, diagnostic modalities, and treatment options. Methods: A literature review of relevant studies on FD, including genetics, epidemiology, clinical presentation, diagnostic methods, and treatment options, was conducted. Results: Cardiac manifestations of FD included left ventricular hypertrophy (LVH), heart failure, arrhythmias, and sudden death. Diagnostic approaches such as electrocardiography, echocardiography, and cardiac magnetic resonance imaging play crucial roles in the early detection and monitoring of cardiac involvement. Enzyme replacement therapy (ERT) and emerging treatments have shown promise in managing FD, although challenges remain. Conclusions: FD remains a challenging condition in cardiology, with under-diagnosis being a concern. Early detection and specific therapy are essential to improve patient outcomes. Echocardiography and cardiac MRI are valuable tools for diagnosis and follow-up. Despite the advances in treatment, accessibility remains an issue. More research is needed to deepen our understanding of FD and to improve therapeutic strategies.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074049 and 12347101)。
文摘Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.
基金Project supported by the National Natural Science Foundation of China (Grant No.U19A2044)the National Natural Science Foundation of China (Grant No.41975037)the Key Technologies Research and Development Program of Anhui Province (Grant No.202004i07020013)。
文摘The Fabry–Perot(FP) resonant cavity is widely used in laser and spectroscopic measurements due to its unique interference transfer function(ITF). In the ideal case of parallel incident light, the ITF of the FP resonant cavity can be expressed by the Airy function. However, in reality, it is difficult to achieve perfect parallelism with collimated beams. In this article, a theoretical model is established for non-parallel light incidence, which assumes that the non-parallel incident light is a cone-shaped beam, and the cone angle is used to quantify the non-parallelism of the beam. The transmittance function of the FP resonant cavity under non-parallel light incidence is derived. The accuracy of the model is experimentally verified. Based on this model, the effects of divergence angle, tilt angle and FP cavity parameters(reflectivity, cavity length)on the ITF are studied. The reasons for the decrease in peak value, broadening and asymmetry of the interference peak under non-parallel light incidence are explained. It is suggested that a fine balance between the interference peak and the collimation effect of the incident light should be considered in the design and application of FP resonant cavities, especially for tilted applications such as angle-scanned spectroscopy. The research results of this article have certain significance for the design and application of FP resonant cavities.
文摘Chaos is a type of motion unique to nonlinear dynamical systems,characterized by extreme sensitivity to initial conditions and the randomness,which makes it potentially useful for secure communication.Chaos research require a easily controllable chaotic oscillator.Chaotic behavior in optical bistability provides a simple theoretical model.Based on the theoretical model,a novel chaotic oscillator in frequency domain is proposed.The chaotic oscillator is composed of a tunable fiber laser,fiber Fabry⁃Perot interferometer(FFPI)and hybrid delayed feedback loop.The laser itself plays a part in delay time which is induced by PZT device.The chaotic oscillator is realized by experiments and chaos behaviors are observed.The chaos oscillator has the characteristic of simplicity and flexibility.It have potential application value in the field of fiber optical communication encryption.