Mechanical energy produced by human motion is ubiquitous,continuous,and usually not utilized,making it an attractive target for sustainable electricity-harvesting applications.In this study,flexible magnetic-Juncus ef...Mechanical energy produced by human motion is ubiquitous,continuous,and usually not utilized,making it an attractive target for sustainable electricity-harvesting applications.In this study,flexible magnetic-Juncus effusus(M-JE)fibers were prepared from plant-extracted three-dimensional porous Juncus effusus(JE)fibers decorated with polyurethane and magnetic particles.The M-JE fibers were woven into fabrics and used for mechanical energy harvesting through electromagnetic induction.The M-JE fabric and induction coil,attached to the human wrist and waist,yielded continuous and stable voltage(2 V)and current(3 mA)during swinging.The proposed M-JE fabric energy harvester exhibited good energy harvesting potential and was capable of quickly charging commercial capacitors to power small electronic devices.The proposed M-JE fabric exhibited good mechanical energy harvesting performance,paving the way for the use of natural plant fibers in energy-harvesting fabrics.展开更多
Perovskite solar cells(PSCs)incorporating 2D/3D heterostructures have exhibited remarkable improvements in both power conversion efficiency and operational stability.Nevertheless,the prevalent spin-coating fabrication...Perovskite solar cells(PSCs)incorporating 2D/3D heterostructures have exhibited remarkable improvements in both power conversion efficiency and operational stability.Nevertheless,the prevalent spin-coating fabrication technique presents formidable challenges for scalable manufacturing processes.Herein,we present a blade-coating compatible methodology for fabricating highperformance 2D/3D PSCs utilizing a low-volatility t-amyl alcohol(t-AmOH)-dimethylformamide(DMF)mixed solvent system.Through systematic materials characterization and comprehensive device performance analysis,we demonstrate that this approach facilitates uniform spatial distribution of butylammonium iodide(BAI)organic spacers,thereby promoting the formation of a high-quality 2D/3D perovskite architecture characterized by enhanced crystallinity and substantially reduced defect density.The optimized device achieves a champion power conversion efficiency of 22.25%while demonstrating exceptional operational stability,retaining 83%of its initial performance after prolonged exposure under ambient conditions(45%relative humidity)for 1000 h.展开更多
The general hot deformation process consists of two steps, hot pressing and die-upsetting in order to obtain the anisotropic NdFeB magnet. This is the first report that the high anisotropy NdFeB magnets can be fabrica...The general hot deformation process consists of two steps, hot pressing and die-upsetting in order to obtain the anisotropic NdFeB magnet. This is the first report that the high anisotropy NdFeB magnets can be fabricated by single stroke hot deforming the isotropic magnet. The magnetic properties of those materials are: coercivity iHc ~11 kOe, remanence Br ~12 kG, and the maximum energy product (BH)max ~28 MG.Oe.展开更多
A CMOS FinFET fabricated on bulk silicon substrate is demonstrated.Besides owning a FinFET structure similar to the original FinFET on SOI,the device combines a grooved planar MOSFET in the Si substrate and the fabric...A CMOS FinFET fabricated on bulk silicon substrate is demonstrated.Besides owning a FinFET structure similar to the original FinFET on SOI,the device combines a grooved planar MOSFET in the Si substrate and the fabrication processes are fully compatible with conventional CMOS process,including salicide technology.The CMOS device,inverter,and CMOS ring oscillator of this structure with normal poly silicon and W/TiN gate electrode are fabricated respectively.Driving current and sub threshold characteristics of CMOS FinFET on Si substrate with actual gate length of 110nm are studied.The inverter operates correctly and minimum per stage delay of 201 stage ring oscillator is 146ps at V d=3V.The result indicates the device is a promising candidate for the application of future VLSI circuit.展开更多
Following are the comments for the queries raised by Prof. Pawel E. Tomaszewski on our published paper entitled "Structural, Optical, and Electrical Properties of Zn-Doped CdO Thin Films Fabricated by a Simplified Sp...Following are the comments for the queries raised by Prof. Pawel E. Tomaszewski on our published paper entitled "Structural, Optical, and Electrical Properties of Zn-Doped CdO Thin Films Fabricated by a Simplified Spray Pyrolysis Technique" by K. Usharani and A.R. Balu published in Acta Metall. Sin.展开更多
A pseudo-dynamic testing program was generated on a fabricated composite frame with steel plate shear walls (SPSWs) to study its seismic perlbrmance. The specimen was a three-storey single-bay frame, which was compo...A pseudo-dynamic testing program was generated on a fabricated composite frame with steel plate shear walls (SPSWs) to study its seismic perlbrmance. The specimen was a three-storey single-bay frame, which was composed of H- section steel columns and composite beams, and was assembled by bolted height-adjustable steel beam-to-column connections (BHA connections). Beam-only-connected SPSWs were selected as lateral load resisting members. The specimen was subjected to four ground motions of progressively increasing intensity. The results showed that: (1) beam-only-connected S PSWs provided sufficient lateral load resistance, lateral stiffness, and energy dissipation capacity to the fabricated frame via the tension ficld action developed in their infill panels; (2) the fabricated frame, assembled by BHA connections, exhibited substantial redundancy and good ductility; (3) an undesirable failure mode of the fabricated frame, in huge earthquakes, included severe cracking in composite beams and block shear failure in SPSWs' connections; (4) the inter-storey shear force distribution determined by ASCE/SE1 7-10 was verified with experimental data.展开更多
Au nanoparticle-decorated TiO2 nanotube arrays are prepared by a simple method, which is a thermal annealing thin gold film deposited on anodie oxidized TiO2 nanotube arrays. These electron microscope images present t...Au nanoparticle-decorated TiO2 nanotube arrays are prepared by a simple method, which is a thermal annealing thin gold film deposited on anodie oxidized TiO2 nanotube arrays. These electron microscope images present that Au nanoparticles are well dispersed within the wall and on the surface of the XiO2 nanotubes. Meanwhile, the morphologies of Au nanoparticles can be controlled by changing the thickness of the deposited gold film. Associ- ated with the excitation of localized surface plasmon resonances, the prepared Au nanoparticle-decorated TiO2 nanotube arrays could work as visible light responsive photocatalysts to produce a greatly enhanced photocurrent density. By varying the initial gold film thickness, such Au nanoparticle-decorated TiO2 nanotube arrays could be optimized to obtain the highest photocurrent generation efficiency in the visible and UV light regions.展开更多
As a newly developed method for fabricating Josephson junctions,a focused helium ion beam has the advantage of producing reliable and reproducible junctions.We fabricated Josephson junctions with a focused helium ion ...As a newly developed method for fabricating Josephson junctions,a focused helium ion beam has the advantage of producing reliable and reproducible junctions.We fabricated Josephson junctions with a focused helium ion beam on our 50 nm YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films.We focused on the junction with irradiation doses ranging from 100 to 300 ions/nm and demonstrated that the junction barrier can be modulated by the ion dose and that within this dose range,the junctions behave like superconductor–normal conductor–superconductor junctions.The measurements of the I–V characteristics,Fraunhofer diffraction pattern,and Shapiro steps of the junctions clearly show AC and DC Josephson effects.Our findings demonstrate high reproducibility of junction fabrication using a focused helium ion beam and suggest that commercial devices based on this nanotechnology could operate at liquid nitrogen temperatures.展开更多
CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposit...CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.展开更多
We report on the fabrication of the lO-mm-long lithium niobate ridge waveguide and its supercontinuum gen- eration at near-visible wavelengths (around 800hm). The waveguides are fabricated by a combination of MeV co...We report on the fabrication of the lO-mm-long lithium niobate ridge waveguide and its supercontinuum gen- eration at near-visible wavelengths (around 800hm). The waveguides are fabricated by a combination of MeV copper ion implantation followed by wet etching in a proton exchanged lithium niobate planar waveguide. Using a mode-locked Ti:sapphire laser with a central wavelength of 800nm, the generated broadest supereontinuum through the ridge waveguides spans 302 nm (at -30 dB points), from 693 to 995 nm. Temporal coherence proper- ties of the supercontinuum are experimentally studied by a Michelson interferometer and the coherence length of the broadest supercontinuum is measured to be 5.2 μm. Our results offer potential for a compact and integrated supercontinuum source for applications including bio-imaging, spectroscopy and optical communication.展开更多
The commented paper [1] presents the results on structural, optical, and electrical properties of Zn-doped CdO thin films. Unfortunately, there are several mistakes and errors not found by any of referees. It is neces...The commented paper [1] presents the results on structural, optical, and electrical properties of Zn-doped CdO thin films. Unfortunately, there are several mistakes and errors not found by any of referees. It is necessary to show these mistakes or misleading statements to avoid their use in the future papers by authors and other peoples.展开更多
China has had 30 years experience in titanium research,development,production and appli-cation so far.It was really a rough and bumpy road for developing Ti working industry,however,since a large amount of work was do...China has had 30 years experience in titanium research,development,production and appli-cation so far.It was really a rough and bumpy road for developing Ti working industry,however,since a large amount of work was done and great many achievements were obtained by the scien-tists and engineers in this field,a firm base of Ti working industry has been established in China atlast.Especially since the beginning of 1980 s,it has been developed to a new level.On these bases,afavourable condition to speed up the development of Ti working industry arises in China.展开更多
The effects of different masks and patterns on the top stripping of GaAs microwire arrays fabricated by inductively coupled plasma etching for 20min and 40min are investigated. The results show that the mask layer is ...The effects of different masks and patterns on the top stripping of GaAs microwire arrays fabricated by inductively coupled plasma etching for 20min and 40min are investigated. The results show that the mask layer is the main affect of the top stripping of the GaAs microwires in 40min. Increasing the mask layers and reducing the photoresist layers can prevent top stripping and result in a suitable GaAs microwire array.展开更多
This study investigated thickness requirements for field fabricated (large) spherical liquefied natural gas (LNG) pressure vessels using the finite element method. In the FEM modeling, 3-dimenisonal analysis was used ...This study investigated thickness requirements for field fabricated (large) spherical liquefied natural gas (LNG) pressure vessels using the finite element method. In the FEM modeling, 3-dimenisonal analysis was used to determine thickness requirements at different sections of a 5-m radius spherical vessels based on the allowable stress of the material as given in ASME Section II Part D. Shallow triangular element based on shallow shell formation was employed using area coordinate system which had been proved better than the global coordinate system in an earlier work of the authors applied to shop built vessels. This element has five degrees of freedom at each corner node-five of which are the essential external degrees of freedom excluding nodal degree of freedom associated with in plane shell rotation. Set of equations resulting from Finite Element Analysis were solved with computer programme code written in FORTRAN 90 while the thickness requirements of each section of spherical pressure vessels subjected to different loading conditions were determined. The results showed membrane thickness decreasing from the base upwards for LNG vessels but constant thickness for compressed gas vessels. The obtained results were validated using values obtained from ASME Section VIII Part UG. The results showed no significant difference (P > 0.05) with values obtained through ASME Section VIII Part UG.展开更多
Building information modeling(BIM)technology simulates visual information data by integrating the information data of construction projects.The presentation of information parameters allows better collaborative manage...Building information modeling(BIM)technology simulates visual information data by integrating the information data of construction projects.The presentation of information parameters allows better collaborative management of the construction process.BIM technology is applied to integrate information data during the construction of prefabricated structures,analyze the source of information data of construction projects,and build a digital information model.BIM technology consists of information integration function,information data simulation,cross-region coordination and more.Therefore,this paper applies it to the process of prefabricated structure design,puts forward relevant technical research strategies,establishes relevant models,ensures the accuracy of drawing,and simulates the final construction effect according to the combination of arranged relevant parameters.展开更多
New Yorkbased Human Rights Watch re cently released its annual World Human Rights Report, in which it habitually points an accusing finger at other countnes" human nglats records. As a Chinese scholar of human right...New Yorkbased Human Rights Watch re cently released its annual World Human Rights Report, in which it habitually points an accusing finger at other countnes" human nglats records. As a Chinese scholar of human rights studies, I have to express my observations about the report's allegations against China. First, the report still takes an outdated and biased approach to judge human rights records and makes comments that are beyond reality. For instance, it continues to claim that China's household registration, or hukou, system, denies migrant workers' children the chance of a decent education. However, a regulation introduced in 2003 already allows the children of migrant workers to receive nineyear compulsory education in cities where their parents work.展开更多
Composites are composed of multiphase materials, where each phase has specific properties that differ from those of the other phases which can effect on the whole properties of composite. Nanocomposites are class of m...Composites are composed of multiphase materials, where each phase has specific properties that differ from those of the other phases which can effect on the whole properties of composite. Nanocomposites are class of materials that contain at least one phase in the nanometric size range and can be produced by any suitable technique for preparing nanomaterials. Composites are an interesting class of materials that have recently been used in numerous applications, including structural, biomedical, electronics, and environmental applications. In composites, reinforcements might be fibers, particulates, or whiskers. Mechanical alloying(MA) is a promising technique for producing nanocomposite materials that are difficult or impossible to prepare via conventional techniques. In this review, we provide an overview of nanocomposites prepared by the MA process. The mechanism of milling and other milling parameters are overviewed, and insights into sintering categories and parameters are also presented.展开更多
Nanometer Al_2O_3 is one of new types of functional materials with broad application and development prospects in the future. The basic principle and ways of nanometer Al_2O_3 fabricated using sol-gel technique were i...Nanometer Al_2O_3 is one of new types of functional materials with broad application and development prospects in the future. The basic principle and ways of nanometer Al_2O_3 fabricated using sol-gel technique were introduced, and the factors affecting nanometer Al_2O_3 fabricated using sol-gel method were analyzed. The progress in research on nanometer Al_2O_3 and the application fields of nanometer Al_2O_3 were reviewed. The existing problems and the problems prospect for nanometer Al_2O_3 were pointed out.展开更多
As a bone scaffold,meeting all basic requirements besides dealing with other bone-related issues-bone cancer and accelerated regeneration-is not expected from traditional scaffolds,but a newer class of scaffolds calle...As a bone scaffold,meeting all basic requirements besides dealing with other bone-related issues-bone cancer and accelerated regeneration-is not expected from traditional scaffolds,but a newer class of scaffolds called multifunctional.From a clinical point of view,being a multifunctional scaffold means reducing in healing time,direct costs-medicine,surgery,and hospitalization-and indirect costs-loss of mobility,losing job,and pain.The main aim of the present review is following the multifunctional bone scaffolds trend to deal with both bone regeneration and cancer therapy.Special consideration is given to different fabrication techniques which have been applied to yield these materials spanning from traditional to modern ones.Moreover,the hierarchical structure of bone plus bone cancers and available medicines to them are introduced to familiarize the potential reader of review with the pluri-disciplinary essence of the field.Eventually,a brief discussion relating to the future trend of these materials is provided.展开更多
基金National Natural Science Foundation of China(52303064 and U21A2095)the National Key Research and Development Program of China(2022YFB3805800)the Shandong Key Research and Development Program(2023CXGC010612).
文摘Mechanical energy produced by human motion is ubiquitous,continuous,and usually not utilized,making it an attractive target for sustainable electricity-harvesting applications.In this study,flexible magnetic-Juncus effusus(M-JE)fibers were prepared from plant-extracted three-dimensional porous Juncus effusus(JE)fibers decorated with polyurethane and magnetic particles.The M-JE fibers were woven into fabrics and used for mechanical energy harvesting through electromagnetic induction.The M-JE fabric and induction coil,attached to the human wrist and waist,yielded continuous and stable voltage(2 V)and current(3 mA)during swinging.The proposed M-JE fabric energy harvester exhibited good energy harvesting potential and was capable of quickly charging commercial capacitors to power small electronic devices.The proposed M-JE fabric exhibited good mechanical energy harvesting performance,paving the way for the use of natural plant fibers in energy-harvesting fabrics.
基金supported by ational Natural Science Foundation of China(Nos.62405293,62301509,62304209)Key Research and Development Program of Shanxi Province(No.202302030201001)Fundamental Research Program of Shanxi Province(Nos.202303021212191,202203021222079,20210302123203,202103021223185).
文摘Perovskite solar cells(PSCs)incorporating 2D/3D heterostructures have exhibited remarkable improvements in both power conversion efficiency and operational stability.Nevertheless,the prevalent spin-coating fabrication technique presents formidable challenges for scalable manufacturing processes.Herein,we present a blade-coating compatible methodology for fabricating highperformance 2D/3D PSCs utilizing a low-volatility t-amyl alcohol(t-AmOH)-dimethylformamide(DMF)mixed solvent system.Through systematic materials characterization and comprehensive device performance analysis,we demonstrate that this approach facilitates uniform spatial distribution of butylammonium iodide(BAI)organic spacers,thereby promoting the formation of a high-quality 2D/3D perovskite architecture characterized by enhanced crystallinity and substantially reduced defect density.The optimized device achieves a champion power conversion efficiency of 22.25%while demonstrating exceptional operational stability,retaining 83%of its initial performance after prolonged exposure under ambient conditions(45%relative humidity)for 1000 h.
文摘The general hot deformation process consists of two steps, hot pressing and die-upsetting in order to obtain the anisotropic NdFeB magnet. This is the first report that the high anisotropy NdFeB magnets can be fabricated by single stroke hot deforming the isotropic magnet. The magnetic properties of those materials are: coercivity iHc ~11 kOe, remanence Br ~12 kG, and the maximum energy product (BH)max ~28 MG.Oe.
文摘A CMOS FinFET fabricated on bulk silicon substrate is demonstrated.Besides owning a FinFET structure similar to the original FinFET on SOI,the device combines a grooved planar MOSFET in the Si substrate and the fabrication processes are fully compatible with conventional CMOS process,including salicide technology.The CMOS device,inverter,and CMOS ring oscillator of this structure with normal poly silicon and W/TiN gate electrode are fabricated respectively.Driving current and sub threshold characteristics of CMOS FinFET on Si substrate with actual gate length of 110nm are studied.The inverter operates correctly and minimum per stage delay of 201 stage ring oscillator is 146ps at V d=3V.The result indicates the device is a promising candidate for the application of future VLSI circuit.
文摘Following are the comments for the queries raised by Prof. Pawel E. Tomaszewski on our published paper entitled "Structural, Optical, and Electrical Properties of Zn-Doped CdO Thin Films Fabricated by a Simplified Spray Pyrolysis Technique" by K. Usharani and A.R. Balu published in Acta Metall. Sin.
基金Project supported by the National Natural Science Foundation of China (No. 51378147)
文摘A pseudo-dynamic testing program was generated on a fabricated composite frame with steel plate shear walls (SPSWs) to study its seismic perlbrmance. The specimen was a three-storey single-bay frame, which was composed of H- section steel columns and composite beams, and was assembled by bolted height-adjustable steel beam-to-column connections (BHA connections). Beam-only-connected SPSWs were selected as lateral load resisting members. The specimen was subjected to four ground motions of progressively increasing intensity. The results showed that: (1) beam-only-connected S PSWs provided sufficient lateral load resistance, lateral stiffness, and energy dissipation capacity to the fabricated frame via the tension ficld action developed in their infill panels; (2) the fabricated frame, assembled by BHA connections, exhibited substantial redundancy and good ductility; (3) an undesirable failure mode of the fabricated frame, in huge earthquakes, included severe cracking in composite beams and block shear failure in SPSWs' connections; (4) the inter-storey shear force distribution determined by ASCE/SE1 7-10 was verified with experimental data.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474215 and 21204058the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Au nanoparticle-decorated TiO2 nanotube arrays are prepared by a simple method, which is a thermal annealing thin gold film deposited on anodie oxidized TiO2 nanotube arrays. These electron microscope images present that Au nanoparticles are well dispersed within the wall and on the surface of the XiO2 nanotubes. Meanwhile, the morphologies of Au nanoparticles can be controlled by changing the thickness of the deposited gold film. Associ- ated with the excitation of localized surface plasmon resonances, the prepared Au nanoparticle-decorated TiO2 nanotube arrays could work as visible light responsive photocatalysts to produce a greatly enhanced photocurrent density. By varying the initial gold film thickness, such Au nanoparticle-decorated TiO2 nanotube arrays could be optimized to obtain the highest photocurrent generation efficiency in the visible and UV light regions.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0601901)the National Natural Science Foundation of China(Grant No.61571019)。
文摘As a newly developed method for fabricating Josephson junctions,a focused helium ion beam has the advantage of producing reliable and reproducible junctions.We fabricated Josephson junctions with a focused helium ion beam on our 50 nm YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films.We focused on the junction with irradiation doses ranging from 100 to 300 ions/nm and demonstrated that the junction barrier can be modulated by the ion dose and that within this dose range,the junctions behave like superconductor–normal conductor–superconductor junctions.The measurements of the I–V characteristics,Fraunhofer diffraction pattern,and Shapiro steps of the junctions clearly show AC and DC Josephson effects.Our findings demonstrate high reproducibility of junction fabrication using a focused helium ion beam and suggest that commercial devices based on this nanotechnology could operate at liquid nitrogen temperatures.
基金Supported by the Key Program of the National Natural Science Foundation of China under Grant No 61334009the National High Technology Research and Development Program of China under Grant No 2014AA032604
文摘CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61575129 and 11375105the Postdoctoral Science Foundation of China under Grant No 2016M602511+1 种基金the Shenzhen Science and Technology Planning under Grant No JCYJ20160422142912923the State Key Laboratory of Nuclear Physics and Technology,Peking University
文摘We report on the fabrication of the lO-mm-long lithium niobate ridge waveguide and its supercontinuum gen- eration at near-visible wavelengths (around 800hm). The waveguides are fabricated by a combination of MeV copper ion implantation followed by wet etching in a proton exchanged lithium niobate planar waveguide. Using a mode-locked Ti:sapphire laser with a central wavelength of 800nm, the generated broadest supereontinuum through the ridge waveguides spans 302 nm (at -30 dB points), from 693 to 995 nm. Temporal coherence proper- ties of the supercontinuum are experimentally studied by a Michelson interferometer and the coherence length of the broadest supercontinuum is measured to be 5.2 μm. Our results offer potential for a compact and integrated supercontinuum source for applications including bio-imaging, spectroscopy and optical communication.
文摘The commented paper [1] presents the results on structural, optical, and electrical properties of Zn-doped CdO thin films. Unfortunately, there are several mistakes and errors not found by any of referees. It is necessary to show these mistakes or misleading statements to avoid their use in the future papers by authors and other peoples.
文摘China has had 30 years experience in titanium research,development,production and appli-cation so far.It was really a rough and bumpy road for developing Ti working industry,however,since a large amount of work was done and great many achievements were obtained by the scien-tists and engineers in this field,a firm base of Ti working industry has been established in China atlast.Especially since the beginning of 1980 s,it has been developed to a new level.On these bases,afavourable condition to speed up the development of Ti working industry arises in China.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61261009 and 61067001the Key Program of Science and Technology Research of the Ministry of Education of China under Grant No 212090+1 种基金the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006
文摘The effects of different masks and patterns on the top stripping of GaAs microwire arrays fabricated by inductively coupled plasma etching for 20min and 40min are investigated. The results show that the mask layer is the main affect of the top stripping of the GaAs microwires in 40min. Increasing the mask layers and reducing the photoresist layers can prevent top stripping and result in a suitable GaAs microwire array.
文摘This study investigated thickness requirements for field fabricated (large) spherical liquefied natural gas (LNG) pressure vessels using the finite element method. In the FEM modeling, 3-dimenisonal analysis was used to determine thickness requirements at different sections of a 5-m radius spherical vessels based on the allowable stress of the material as given in ASME Section II Part D. Shallow triangular element based on shallow shell formation was employed using area coordinate system which had been proved better than the global coordinate system in an earlier work of the authors applied to shop built vessels. This element has five degrees of freedom at each corner node-five of which are the essential external degrees of freedom excluding nodal degree of freedom associated with in plane shell rotation. Set of equations resulting from Finite Element Analysis were solved with computer programme code written in FORTRAN 90 while the thickness requirements of each section of spherical pressure vessels subjected to different loading conditions were determined. The results showed membrane thickness decreasing from the base upwards for LNG vessels but constant thickness for compressed gas vessels. The obtained results were validated using values obtained from ASME Section VIII Part UG. The results showed no significant difference (P > 0.05) with values obtained through ASME Section VIII Part UG.
文摘Building information modeling(BIM)technology simulates visual information data by integrating the information data of construction projects.The presentation of information parameters allows better collaborative management of the construction process.BIM technology is applied to integrate information data during the construction of prefabricated structures,analyze the source of information data of construction projects,and build a digital information model.BIM technology consists of information integration function,information data simulation,cross-region coordination and more.Therefore,this paper applies it to the process of prefabricated structure design,puts forward relevant technical research strategies,establishes relevant models,ensures the accuracy of drawing,and simulates the final construction effect according to the combination of arranged relevant parameters.
文摘New Yorkbased Human Rights Watch re cently released its annual World Human Rights Report, in which it habitually points an accusing finger at other countnes" human nglats records. As a Chinese scholar of human rights studies, I have to express my observations about the report's allegations against China. First, the report still takes an outdated and biased approach to judge human rights records and makes comments that are beyond reality. For instance, it continues to claim that China's household registration, or hukou, system, denies migrant workers' children the chance of a decent education. However, a regulation introduced in 2003 already allows the children of migrant workers to receive nineyear compulsory education in cities where their parents work.
文摘Composites are composed of multiphase materials, where each phase has specific properties that differ from those of the other phases which can effect on the whole properties of composite. Nanocomposites are class of materials that contain at least one phase in the nanometric size range and can be produced by any suitable technique for preparing nanomaterials. Composites are an interesting class of materials that have recently been used in numerous applications, including structural, biomedical, electronics, and environmental applications. In composites, reinforcements might be fibers, particulates, or whiskers. Mechanical alloying(MA) is a promising technique for producing nanocomposite materials that are difficult or impossible to prepare via conventional techniques. In this review, we provide an overview of nanocomposites prepared by the MA process. The mechanism of milling and other milling parameters are overviewed, and insights into sintering categories and parameters are also presented.
文摘Nanometer Al_2O_3 is one of new types of functional materials with broad application and development prospects in the future. The basic principle and ways of nanometer Al_2O_3 fabricated using sol-gel technique were introduced, and the factors affecting nanometer Al_2O_3 fabricated using sol-gel method were analyzed. The progress in research on nanometer Al_2O_3 and the application fields of nanometer Al_2O_3 were reviewed. The existing problems and the problems prospect for nanometer Al_2O_3 were pointed out.
文摘As a bone scaffold,meeting all basic requirements besides dealing with other bone-related issues-bone cancer and accelerated regeneration-is not expected from traditional scaffolds,but a newer class of scaffolds called multifunctional.From a clinical point of view,being a multifunctional scaffold means reducing in healing time,direct costs-medicine,surgery,and hospitalization-and indirect costs-loss of mobility,losing job,and pain.The main aim of the present review is following the multifunctional bone scaffolds trend to deal with both bone regeneration and cancer therapy.Special consideration is given to different fabrication techniques which have been applied to yield these materials spanning from traditional to modern ones.Moreover,the hierarchical structure of bone plus bone cancers and available medicines to them are introduced to familiarize the potential reader of review with the pluri-disciplinary essence of the field.Eventually,a brief discussion relating to the future trend of these materials is provided.