Abstract: At first one of g-inverses of A (×) In+Im(×) BT is given out, then the explicit solution to matrix equation AX + XB = C is gained by using the method of matrix decomposition, finally, a nume...Abstract: At first one of g-inverses of A (×) In+Im(×) BT is given out, then the explicit solution to matrix equation AX + XB = C is gained by using the method of matrix decomposition, finally, a numerical example is obtained.展开更多
In this paper, the minimal residual (MRES) method for solving nonsymmetric equation systems was improved, the recurrence relation was deduced between the approximate solutions of the linear equation system Ax = b, a...In this paper, the minimal residual (MRES) method for solving nonsymmetric equation systems was improved, the recurrence relation was deduced between the approximate solutions of the linear equation system Ax = b, and a more effective method was presented, which can reduce the operational count and the storage.展开更多
In this paper, the concept of the s-doubly diagonally dominant matrices is introduced and the properties of these matrices are discussed. With the properties of the s-doubly diagonally dominant matrices and the proper...In this paper, the concept of the s-doubly diagonally dominant matrices is introduced and the properties of these matrices are discussed. With the properties of the s-doubly diagonally dominant matrices and the properties of comparison matrices, some equivalent conditions for H-matrices are presented. These conditions generalize and improve existing results about the equivalent conditions for H-matrices. Applications and examples using these new equivalent conditions are also presented, and a new inclusion region of k-multiple eigenvalues of matrices is obtained. MR Subject Classification 15A06 - 15A57 - 65F05 Keywords H-matrix - S-doubly diagonally dominant matrix - Gauss transform - Schur complement Supported by the National Natural Science Foundation of China (19971065).展开更多
We prove that a locally compact ANR-space X is a Q-manifold if and only if it has the Disjoint Disk Property (DDP), all points of X are homological Z∞-points and X has the countable-dimensional approximation property...We prove that a locally compact ANR-space X is a Q-manifold if and only if it has the Disjoint Disk Property (DDP), all points of X are homological Z∞-points and X has the countable-dimensional approximation property (cd-AP), which means that each map f:K→X of a compact polyhedron can be approximated by a map with the countable-dimensional image. As an application we prove that a space X with DDP and cd-AP is a Q-manifold if some finite power of X is a Q-manifold. If some finite power of a space X with cd-AP is a Q-manifold, then X2 and X×[0,1] are Q-manifolds as well. We construct a countable familyχof spaces with DDP and cd-AP such that no space X∈χis homeomorphic to the Hilbert cube Q whereas the product X×Y of any different spaces X, Y∈χis homeomorphic to Q. We also show that no uncountable familyχwith such properties exists.展开更多
For large sparse non-Hermitian positive definite system of linear equations, we present several variants of the Hermitian and skew-Hermitian splitting (HSS) about the coefficient matrix and establish correspondingly s...For large sparse non-Hermitian positive definite system of linear equations, we present several variants of the Hermitian and skew-Hermitian splitting (HSS) about the coefficient matrix and establish correspondingly several HSS-based iterative schemes. Theoretical analyses show that these methods are convergent unconditionally to the exact solution of the referred system of linear equations, and they may show advantages on problems that the HSS method is ineffective.展开更多
In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is establishe...In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.展开更多
文摘Abstract: At first one of g-inverses of A (×) In+Im(×) BT is given out, then the explicit solution to matrix equation AX + XB = C is gained by using the method of matrix decomposition, finally, a numerical example is obtained.
文摘In this paper, the minimal residual (MRES) method for solving nonsymmetric equation systems was improved, the recurrence relation was deduced between the approximate solutions of the linear equation system Ax = b, and a more effective method was presented, which can reduce the operational count and the storage.
基金Supported by the National Natural Science Foundation of China( 1 9971 0 65 )
文摘In this paper, the concept of the s-doubly diagonally dominant matrices is introduced and the properties of these matrices are discussed. With the properties of the s-doubly diagonally dominant matrices and the properties of comparison matrices, some equivalent conditions for H-matrices are presented. These conditions generalize and improve existing results about the equivalent conditions for H-matrices. Applications and examples using these new equivalent conditions are also presented, and a new inclusion region of k-multiple eigenvalues of matrices is obtained. MR Subject Classification 15A06 - 15A57 - 65F05 Keywords H-matrix - S-doubly diagonally dominant matrix - Gauss transform - Schur complement Supported by the National Natural Science Foundation of China (19971065).
基金This work was supported by the Slovenian-Ukrainian(Grant No.SLO-UKR 04-06/07)
文摘We prove that a locally compact ANR-space X is a Q-manifold if and only if it has the Disjoint Disk Property (DDP), all points of X are homological Z∞-points and X has the countable-dimensional approximation property (cd-AP), which means that each map f:K→X of a compact polyhedron can be approximated by a map with the countable-dimensional image. As an application we prove that a space X with DDP and cd-AP is a Q-manifold if some finite power of X is a Q-manifold. If some finite power of a space X with cd-AP is a Q-manifold, then X2 and X×[0,1] are Q-manifolds as well. We construct a countable familyχof spaces with DDP and cd-AP such that no space X∈χis homeomorphic to the Hilbert cube Q whereas the product X×Y of any different spaces X, Y∈χis homeomorphic to Q. We also show that no uncountable familyχwith such properties exists.
基金the National Basic Research Program(Grant No.2005CB321702)The ChinaOutstanding Young Scientist Foundation(Grant No.10525102)the National Natural Science Foundation of China(Grant No.10471146)
文摘For large sparse non-Hermitian positive definite system of linear equations, we present several variants of the Hermitian and skew-Hermitian splitting (HSS) about the coefficient matrix and establish correspondingly several HSS-based iterative schemes. Theoretical analyses show that these methods are convergent unconditionally to the exact solution of the referred system of linear equations, and they may show advantages on problems that the HSS method is ineffective.
基金the National Science Foundation(Grant Nos.DMS0409297,DMR0205232,CCF-0430349)US National Institute of Health-National Cancer Institute(Grant No.1R01CA125707-01A1)+2 种基金the National Natural Science Foundation of China(Grant No.10571172)the National Basic Research Program(Grant No.2005CB321704)the Youth's Innovative Program of Chinese Academy of Sciences(Grant Nos.K7290312G9,K7502712F9)
文摘In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.