Arctic sea ice is an important component of the global climate system and has experienced rapid changes during in the past few decades,the prediction of which is a significant application for climate models.In this st...Arctic sea ice is an important component of the global climate system and has experienced rapid changes during in the past few decades,the prediction of which is a significant application for climate models.In this study,a Localized Error Subspace Transform Kalman Filter is employed in a coupled climate system model(the Flexible Global Ocean–Atmosphere–Land System Model,version f3-L(FGOALS-f3-L))to assimilate sea-ice concentration(SIC)and sea-ice thickness(SIT)data for melting-season ice predictions.The scheme is applied through the following steps:(1)initialization for generating initial ensembles;(2)analysis for assimilating observed data;(3)adoption for dividing ice states into five thickness categories;(4)forecast for evolving the model;(5)resampling for updating model uncertainties.Several experiments were conducted to examine its results and impacts.Compared with the control experiment,the continuous assimilation experiments(CTNs)indicate assimilations improve model SICs and SITs persistently and generate realistic initials.Assimilating SIC+SIT data better corrects overestimated model SITs spatially than when only assimilating SIC data.The continuous assimilation restart experiments indicate the initials from the CTNs correct the overestimated marginal SICs and overall SITs remarkably well,as well as the cold biases in the oceanic and atmospheric models.The initials with SIC+SIT assimilated show more reasonable spatial improvements.Nevertheless,the SICs in the central Arctic undergo abnormal summer reductions,which is probably because overestimated SITs are reduced in the initials but the strong seasonal cycle(summer melting)biases are unchanged.Therefore,since systematic biases are complicated in a coupled system,for FGOALS-f3-L to make better ice predictions,oceanic and atmospheric assimilations are expected required.展开更多
Bulked-segregant analysis by deep sequencing(BSA-seq) is a widely used method for mapping QTL(quantitative trait loci) due to its simplicity, speed, cost-effectiveness, and efficiency. However, the ability of BSA-seq ...Bulked-segregant analysis by deep sequencing(BSA-seq) is a widely used method for mapping QTL(quantitative trait loci) due to its simplicity, speed, cost-effectiveness, and efficiency. However, the ability of BSA-seq to detect QTL is often limited by inappropriate experimental designs, as evidenced by numerous practical studies. Most BSA-seq studies have utilized small to medium-sized populations, with F2populations being the most common choice. Nevertheless, theoretical studies have shown that using a large population with an appropriate pool size can significantly enhance the power and resolution of QTL detection in BSA-seq, with F_(3)populations offering notable advantages over F2populations. To provide an experimental demonstration, we tested the power of BSA-seq to identify QTL controlling days from sowing to heading(DTH) in a 7200-plant rice F_(3)population in two environments, with a pool size of approximately 500. Each experiment identified 34 QTL, an order of magnitude greater than reported in most BSA-seq experiments, of which 23 were detected in both experiments, with 17 of these located near41 previously reported QTL and eight cloned genes known to control DTH in rice. These results indicate that QTL mapping by BSA-seq in large F_(3)populations and multi-environment experiments can achieve high power, resolution, and reliability.展开更多
Bivalve aquaculture plays a crucial role in the aquaculture industry due to the economic value of many bivalve species.Understanding the underlying genetic basis of bivalve growth regulation is essential for enhancing...Bivalve aquaculture plays a crucial role in the aquaculture industry due to the economic value of many bivalve species.Understanding the underlying genetic basis of bivalve growth regulation is essential for enhancing germplasm innovation and ensuring sustainable development of the industry.Though numerous candidate genes have been identified,their functional validation remains challenging.Fortunately,the dwarf surf clam(Mulinia lateralis)serves as a promising model organism for investigating genetic mechanisms underlying growth regulation in bivalves.The GWAS study in the Yesso scallop(Patinopecten yessoensis)has pinpointed the E2F3 gene as a key regulator of growth-related traits.However,the specific role of E2F3 in bivalve growth remains unclear.This study aimed to further confirm the regulatory function of the E2F3 gene in the dwarf surf clam through RNA interference experiments.Our results revealed several genes are associated with individual growth and development,including CTS7,HSP70B2,and PGLYRP3,as well as genes involved in lipid metabolism such as FABP2 and FASN.Functional enrichment analysis indicated that E2F3 primarily modulates critical processes like amino acid and lipid metabolism.These findings suggest that E2F3 likely regulates growth in the dwarf surf clam by influencing amino acid and lipid metabolism.Overall,this study advances our understanding on the function of E2F3 gene in growth regulation in bivalves,providing valuable insights for future research in this field.展开更多
基金jointly funded by the National Natural Science Foundation of China(NSFC)[grant number 42130608]the China Postdoctoral Science Foundation[grant number 2024M753169]。
文摘Arctic sea ice is an important component of the global climate system and has experienced rapid changes during in the past few decades,the prediction of which is a significant application for climate models.In this study,a Localized Error Subspace Transform Kalman Filter is employed in a coupled climate system model(the Flexible Global Ocean–Atmosphere–Land System Model,version f3-L(FGOALS-f3-L))to assimilate sea-ice concentration(SIC)and sea-ice thickness(SIT)data for melting-season ice predictions.The scheme is applied through the following steps:(1)initialization for generating initial ensembles;(2)analysis for assimilating observed data;(3)adoption for dividing ice states into five thickness categories;(4)forecast for evolving the model;(5)resampling for updating model uncertainties.Several experiments were conducted to examine its results and impacts.Compared with the control experiment,the continuous assimilation experiments(CTNs)indicate assimilations improve model SICs and SITs persistently and generate realistic initials.Assimilating SIC+SIT data better corrects overestimated model SITs spatially than when only assimilating SIC data.The continuous assimilation restart experiments indicate the initials from the CTNs correct the overestimated marginal SICs and overall SITs remarkably well,as well as the cold biases in the oceanic and atmospheric models.The initials with SIC+SIT assimilated show more reasonable spatial improvements.Nevertheless,the SICs in the central Arctic undergo abnormal summer reductions,which is probably because overestimated SITs are reduced in the initials but the strong seasonal cycle(summer melting)biases are unchanged.Therefore,since systematic biases are complicated in a coupled system,for FGOALS-f3-L to make better ice predictions,oceanic and atmospheric assimilations are expected required.
基金supported by Natural Science Foundation of Fujian Province (CN) (2020I0009, 2022J01596)Cooperation Project on University Industry-Education-Research of Fujian Provincial Science and Technology Plan (CN) (2022N5011)+1 种基金Lancang-Mekong Cooperation Special Fund (2017-2020)International Sci-Tech Cooperation and Communication Program of Fujian Agriculture and Forestry University (KXGH17014)。
文摘Bulked-segregant analysis by deep sequencing(BSA-seq) is a widely used method for mapping QTL(quantitative trait loci) due to its simplicity, speed, cost-effectiveness, and efficiency. However, the ability of BSA-seq to detect QTL is often limited by inappropriate experimental designs, as evidenced by numerous practical studies. Most BSA-seq studies have utilized small to medium-sized populations, with F2populations being the most common choice. Nevertheless, theoretical studies have shown that using a large population with an appropriate pool size can significantly enhance the power and resolution of QTL detection in BSA-seq, with F_(3)populations offering notable advantages over F2populations. To provide an experimental demonstration, we tested the power of BSA-seq to identify QTL controlling days from sowing to heading(DTH) in a 7200-plant rice F_(3)population in two environments, with a pool size of approximately 500. Each experiment identified 34 QTL, an order of magnitude greater than reported in most BSA-seq experiments, of which 23 were detected in both experiments, with 17 of these located near41 previously reported QTL and eight cloned genes known to control DTH in rice. These results indicate that QTL mapping by BSA-seq in large F_(3)populations and multi-environment experiments can achieve high power, resolution, and reliability.
基金funded by the National Natural Science Foundation of China (No. U2106231)the Key Research and Development Project of Shandong Province (No. 2021 ZLGX03)the National Key Research and Development Program of China (No. 2022YFD2400303)
文摘Bivalve aquaculture plays a crucial role in the aquaculture industry due to the economic value of many bivalve species.Understanding the underlying genetic basis of bivalve growth regulation is essential for enhancing germplasm innovation and ensuring sustainable development of the industry.Though numerous candidate genes have been identified,their functional validation remains challenging.Fortunately,the dwarf surf clam(Mulinia lateralis)serves as a promising model organism for investigating genetic mechanisms underlying growth regulation in bivalves.The GWAS study in the Yesso scallop(Patinopecten yessoensis)has pinpointed the E2F3 gene as a key regulator of growth-related traits.However,the specific role of E2F3 in bivalve growth remains unclear.This study aimed to further confirm the regulatory function of the E2F3 gene in the dwarf surf clam through RNA interference experiments.Our results revealed several genes are associated with individual growth and development,including CTS7,HSP70B2,and PGLYRP3,as well as genes involved in lipid metabolism such as FABP2 and FASN.Functional enrichment analysis indicated that E2F3 primarily modulates critical processes like amino acid and lipid metabolism.These findings suggest that E2F3 likely regulates growth in the dwarf surf clam by influencing amino acid and lipid metabolism.Overall,this study advances our understanding on the function of E2F3 gene in growth regulation in bivalves,providing valuable insights for future research in this field.