This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadr...This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadratic Regulator (LQR) design. The proposed approach leverages NMSS to eliminate the need for state observers, enhancing robustness against model mismatch and improving overall system performance. The PIP controller extends traditional PI control by incorporating additional dynamic feedback. Experimental results demonstrate that the NMSS-PIP-LQR controlled buck converter achieves excellent dynamic performance. The design procedure is fully documented, and microcontroller implementation issues are discussed.展开更多
文摘This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadratic Regulator (LQR) design. The proposed approach leverages NMSS to eliminate the need for state observers, enhancing robustness against model mismatch and improving overall system performance. The PIP controller extends traditional PI control by incorporating additional dynamic feedback. Experimental results demonstrate that the NMSS-PIP-LQR controlled buck converter achieves excellent dynamic performance. The design procedure is fully documented, and microcontroller implementation issues are discussed.