期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synthesis and electrochemical properties of Li_(1.03)Co_(0.1)Mn_(1.9)F_zO_(4-z) material for lithium-ion batteries 被引量:1
1
作者 刘文静 张云 +1 位作者 王辅 卢超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2312-2316,共5页
Lil.03Co0.10MnL90FxO4-x (z=0, 0.05, 0.10, 0.15 and 0.20) cathode materials were synthesized by solid-state reaction using Mn203, Li2CO3, C0203 and LiF as raw materials. The chemical compositions of Lil.03COo.lMnl.9F... Lil.03Co0.10MnL90FxO4-x (z=0, 0.05, 0.10, 0.15 and 0.20) cathode materials were synthesized by solid-state reaction using Mn203, Li2CO3, C0203 and LiF as raw materials. The chemical compositions of Lil.03COo.lMnl.9FzO4-z were examined by inductively coupled plasma (ICP) and potentiometric analysis, the effects of F-substitution contents on structure, morphology and electrochemical performance of spinel Lil.03Coo.loMnl.9004 were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. It is found that the Lix.03 Co0.10Mnl.9oFzOa_z samples display a single phase of cubic spinel structure. The lattice parameters increase with the increase of F content when z〈_0.10. However, the lattice parameters begin to decrease when F content continues to increase. The results show that an appropriate amount ofF substitution for O element with Li+, Co3+ improves discharge capacity and structure stability of the materials. The Lil.03Co0.10Mnl.90FoAsO3.s5 sample shows an initial discharge capacity of 111.0 mA.h/g and has capacity retention of 97.0% after 30 cycles at 0.2C. 展开更多
关键词 cathode materials solid-state reaction f-substitution cycle performance
在线阅读 下载PDF
Fluorine-substituted O3-type NaNi_(0.4)Mn_(0.25)Ti_(0.3)Co_(0.05)O_(2-x)F_(x) cathode with improved rate capability and cyclic stability for sodium-ion storage at high voltage 被引量:6
2
作者 Chaojin Zhou Lichun Yang +4 位作者 Chaogang Zhou Jiangwen Liu Renzong Hu Jun Liu Min Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期341-350,共10页
O3-type Na NiO_(2)-based cathode materials undergo irreversible phase transition and serious capacity decay at high voltage above 4.0 V in sodium-ion batteries. To address these challenges, effects of Fsubstitution on... O3-type Na NiO_(2)-based cathode materials undergo irreversible phase transition and serious capacity decay at high voltage above 4.0 V in sodium-ion batteries. To address these challenges, effects of Fsubstitution on the structure and electrochemical performance of Na Ni_(0.4)Mn_(0.25)Ti_(0.3)Co_(0.05)O_(2) are investigated in this article. The F-substitution leads to expanding of interlayer, which can enhance the mobility of Na+. NaNi_(0.4)Mn_(0.25)Ti_(0.3)Co_(0.05)O_(1.92)F_(0.08)(NMTC-F_(0.08)) with the optimal F-substitution degree exhibits much improved rate capability and cyclic stability. It delivers reversible capacities of 177 and 97 m Ah g^(-1) at 0.05 and 5 C within 2.0–4.4 V, respectively. Galvanostatic intermittent titration technique verifies faster kinetics of Na+diffusion in NMTC-F_(0.08). And in-situ XRD investigation reveals the phase evolution of NMTC-F_(0.08), indicating enhanced structural stability results from F-substitution. This study may shed light on the development of high performance cathode materials for sodium-ion storage at high voltage. 展开更多
关键词 f-substitution Sol-gel method O3-type cathode Sodium-ion battery High-voltage cathode
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部