Purpose: In this contribution we continue our investigations related to the activity index (A/) and its formal analogs. We try to replace the AI by an indicator which is better suited for policy applications. Desig...Purpose: In this contribution we continue our investigations related to the activity index (A/) and its formal analogs. We try to replace the AI by an indicator which is better suited for policy applications. Design/methodology/approach: We point out that fluctuations in the value of the AI for a given country and domain are never the result of that country's policy with respect to that domain alone because there are exogenous factors at play. For this reason we introduce the F-measure. This F-measure is nothing but the harmonic mean of the country's share in the world's publication output in the given domain and the given domain's share in the country's publication output.Findings: The F-measure does not suffer from the problems the AI does Research limitations: The indicator is not yet fully tested in real cases R&D policy management: In policy considerations, the AI should better be replaced by the F-measure as this measure can better show the results of science policy measures (which the AI cannot as it depends on exogenous factors). Originality/value: We provide an original solution for a problem that is not fully realized by policy makers.展开更多
This research explores the use of Fuzzy K-Nearest Neighbor(F-KNN)and Artificial Neural Networks(ANN)for predicting heart stroke incidents,focusing on the impact of feature selection methods,specifically Chi-Square and...This research explores the use of Fuzzy K-Nearest Neighbor(F-KNN)and Artificial Neural Networks(ANN)for predicting heart stroke incidents,focusing on the impact of feature selection methods,specifically Chi-Square and Best First Search(BFS).The study demonstrates that BFS significantly enhances the performance of both classifiers.With BFS preprocessing,the ANN model achieved an impressive accuracy of 97.5%,precision and recall of 97.5%,and an Receiver Operating Characteristics(ROC)area of 97.9%,outperforming the Chi-Square-based ANN,which recorded an accuracy of 91.4%.Similarly,the F-KNN model with BFS achieved an accuracy of 96.3%,precision and recall of 96.3%,and a Receiver Operating Characteristics(ROC)area of 96.2%,surpassing the performance of the Chi-Square F-KNN model,which showed an accuracy of 95%.These results highlight that BFS improves the ability to select the most relevant features,contributing to more reliable and accurate stroke predictions.The findings underscore the importance of using advanced feature selection methods like BFS to enhance the performance of machine learning models in healthcare applications,leading to better stroke risk management and improved patient outcomes.展开更多
社区探测是图和网络领域非常关键的技术之一,其中聚类方法扮演了重要的角色。针对层次聚类算法较高的时间复杂度,在信息理论框架下提出一种改进的社区探测方法 p IBD。p IBD把单部网络变换成二部图网络,预测k值,并基于信息瓶颈理论进行...社区探测是图和网络领域非常关键的技术之一,其中聚类方法扮演了重要的角色。针对层次聚类算法较高的时间复杂度,在信息理论框架下提出一种改进的社区探测方法 p IBD。p IBD把单部网络变换成二部图网络,预测k值,并基于信息瓶颈理论进行划分式聚类。实验结果表明,p IBD方法可以获得较已有层次聚类方法更高的准确率。展开更多
To detect security vulnerabilities in a web application,the security analyst must choose the best performance Security Analysis Static Tool(SAST)in terms of discovering the greatest number of security vulnerabilities ...To detect security vulnerabilities in a web application,the security analyst must choose the best performance Security Analysis Static Tool(SAST)in terms of discovering the greatest number of security vulnerabilities as possible.To compare static analysis tools for web applications,an adapted benchmark to the vulnerability categories included in the known standard Open Web Application Security Project(OWASP)Top Ten project is required.The information of the security effectiveness of a commercial static analysis tool is not usually a publicly accessible research and the state of the art on static security tool analyzers shows that the different design and implementation of those tools has different effectiveness rates in terms of security performance.Given the significant cost of commercial tools,this paper studies the performance of seven static tools using a new methodology proposal and a new benchmark designed for vulnerability categories included in the known standard OWASP Top Ten project.Thus,the practitioners will have more precise information to select the best tool using a benchmark adapted to the last versions of OWASP Top Ten project.The results of this work have been obtaining using widely acceptable metrics to classify them according to three different degree of web application criticality.展开更多
Planetary gear train is a prominent component of helicopter transmission system and its health is of great significance for the flight safety of the helicopter.During health condition monitoring,the selection of a fau...Planetary gear train is a prominent component of helicopter transmission system and its health is of great significance for the flight safety of the helicopter.During health condition monitoring,the selection of a fault sensitive feature subset is meaningful for fault diagnosis of helicopter planetary gear train.According to actual situation,this paper proposed a multi-criteria fusion feature selection algorithm (MCFFSA) to identify an optimal feature subset from the highdimensional original feature space.In MCFFSA,a fault feature set of multiple domains,including time domain,frequency domain and wavelet domain,is first extracted from the raw vibration dataset.Four targeted criteria are then fused by multi-objective evolutionary algorithm based on decomposition (MOEA/D) to find Proto-efficient subsets,wherein two criteria for measuring diagnostic performance are assessed by sparse Bayesian extreme learning machine (SBELM).Further,Fmeasure is adopted to identify the optimal feature subset,which was employed for subsequent fault diagnosis.The effectiveness of MCFFSA is validated through six fault recognition datasets from a real helicopter transmission platform.The experimental results illustrate the superiority of combination of MOEA/D and SBELM in MCFFSA,and comparative analysis demonstrates that the optimal feature subset provided by MCFFSA can achieve a better diagnosis performance than other algorithms.展开更多
文摘Purpose: In this contribution we continue our investigations related to the activity index (A/) and its formal analogs. We try to replace the AI by an indicator which is better suited for policy applications. Design/methodology/approach: We point out that fluctuations in the value of the AI for a given country and domain are never the result of that country's policy with respect to that domain alone because there are exogenous factors at play. For this reason we introduce the F-measure. This F-measure is nothing but the harmonic mean of the country's share in the world's publication output in the given domain and the given domain's share in the country's publication output.Findings: The F-measure does not suffer from the problems the AI does Research limitations: The indicator is not yet fully tested in real cases R&D policy management: In policy considerations, the AI should better be replaced by the F-measure as this measure can better show the results of science policy measures (which the AI cannot as it depends on exogenous factors). Originality/value: We provide an original solution for a problem that is not fully realized by policy makers.
基金funded by FCT/MECI through national funds and,when applicable,co-funded EU funds under UID/50008:Instituto de Telecomunicacoes.
文摘This research explores the use of Fuzzy K-Nearest Neighbor(F-KNN)and Artificial Neural Networks(ANN)for predicting heart stroke incidents,focusing on the impact of feature selection methods,specifically Chi-Square and Best First Search(BFS).The study demonstrates that BFS significantly enhances the performance of both classifiers.With BFS preprocessing,the ANN model achieved an impressive accuracy of 97.5%,precision and recall of 97.5%,and an Receiver Operating Characteristics(ROC)area of 97.9%,outperforming the Chi-Square-based ANN,which recorded an accuracy of 91.4%.Similarly,the F-KNN model with BFS achieved an accuracy of 96.3%,precision and recall of 96.3%,and a Receiver Operating Characteristics(ROC)area of 96.2%,surpassing the performance of the Chi-Square F-KNN model,which showed an accuracy of 95%.These results highlight that BFS improves the ability to select the most relevant features,contributing to more reliable and accurate stroke predictions.The findings underscore the importance of using advanced feature selection methods like BFS to enhance the performance of machine learning models in healthcare applications,leading to better stroke risk management and improved patient outcomes.
文摘社区探测是图和网络领域非常关键的技术之一,其中聚类方法扮演了重要的角色。针对层次聚类算法较高的时间复杂度,在信息理论框架下提出一种改进的社区探测方法 p IBD。p IBD把单部网络变换成二部图网络,预测k值,并基于信息瓶颈理论进行划分式聚类。实验结果表明,p IBD方法可以获得较已有层次聚类方法更高的准确率。
文摘To detect security vulnerabilities in a web application,the security analyst must choose the best performance Security Analysis Static Tool(SAST)in terms of discovering the greatest number of security vulnerabilities as possible.To compare static analysis tools for web applications,an adapted benchmark to the vulnerability categories included in the known standard Open Web Application Security Project(OWASP)Top Ten project is required.The information of the security effectiveness of a commercial static analysis tool is not usually a publicly accessible research and the state of the art on static security tool analyzers shows that the different design and implementation of those tools has different effectiveness rates in terms of security performance.Given the significant cost of commercial tools,this paper studies the performance of seven static tools using a new methodology proposal and a new benchmark designed for vulnerability categories included in the known standard OWASP Top Ten project.Thus,the practitioners will have more precise information to select the best tool using a benchmark adapted to the last versions of OWASP Top Ten project.The results of this work have been obtaining using widely acceptable metrics to classify them according to three different degree of web application criticality.
基金co-supported by the Equipment Pre-research Foundation Project of China (No. JZX7Y20190243016301)Helicopter Transmission Technology Key Laboratory Foundation of China (No. KY-52-2018-0024)the Fundamental Research Funds for the Central Universities & Funding of Jiangsu Innovation Program for Graduate Education under Grant (No. KYLX16_0336)
文摘Planetary gear train is a prominent component of helicopter transmission system and its health is of great significance for the flight safety of the helicopter.During health condition monitoring,the selection of a fault sensitive feature subset is meaningful for fault diagnosis of helicopter planetary gear train.According to actual situation,this paper proposed a multi-criteria fusion feature selection algorithm (MCFFSA) to identify an optimal feature subset from the highdimensional original feature space.In MCFFSA,a fault feature set of multiple domains,including time domain,frequency domain and wavelet domain,is first extracted from the raw vibration dataset.Four targeted criteria are then fused by multi-objective evolutionary algorithm based on decomposition (MOEA/D) to find Proto-efficient subsets,wherein two criteria for measuring diagnostic performance are assessed by sparse Bayesian extreme learning machine (SBELM).Further,Fmeasure is adopted to identify the optimal feature subset,which was employed for subsequent fault diagnosis.The effectiveness of MCFFSA is validated through six fault recognition datasets from a real helicopter transmission platform.The experimental results illustrate the superiority of combination of MOEA/D and SBELM in MCFFSA,and comparative analysis demonstrates that the optimal feature subset provided by MCFFSA can achieve a better diagnosis performance than other algorithms.