A graph G is f-covered if each edge of G belongs to an f-factor. Some sufficient conditions for a graph to be f-covered are given.Katerinis'and Bermond's results are generalized.
A right adequate semigroup of type F is defined as a right adequate semigroup which is an F-rpp semigroup. A right adequate semigroup T of type F is called an F-cover for a right type-A semigroup S if S is the image o...A right adequate semigroup of type F is defined as a right adequate semigroup which is an F-rpp semigroup. A right adequate semigroup T of type F is called an F-cover for a right type-A semigroup S if S is the image of T under an L*-homomorphism. In this paper, we will prove that any right type-A monoid has F-covers and then establish the structure of F-covers for a given right type-A monoid. Our results extend and enrich the related results for inverse semigroups.展开更多
Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-...Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-perfect if F is projective relative to R for any F ∈ F. We give some characterizations of F-perfect rings. For example, we show that a ring R is right F-perfect if and only if F-covers of finitely generated modules are projective. Moreover, we define F-perfect modules and investigate some properties of them.展开更多
文摘A graph G is f-covered if each edge of G belongs to an f-factor. Some sufficient conditions for a graph to be f-covered are given.Katerinis'and Bermond's results are generalized.
基金Supported by the National Natural Science Foundation of China (Grant No.10961014)the Natural Science Foundation of Jiangxi Province (Grant No.2008GZ048)+1 种基金the Science Foundation of the Education Department of Jiangxi Province and the Foundation of Jiangxi Normal University (Grant No.[2007]134)the Graduate Innovation Special Foundation of the Education Department of Jiangxi Province (Grant No.YC08A044)
文摘A right adequate semigroup of type F is defined as a right adequate semigroup which is an F-rpp semigroup. A right adequate semigroup T of type F is called an F-cover for a right type-A semigroup S if S is the image of T under an L*-homomorphism. In this paper, we will prove that any right type-A monoid has F-covers and then establish the structure of F-covers for a given right type-A monoid. Our results extend and enrich the related results for inverse semigroups.
文摘Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-perfect if F is projective relative to R for any F ∈ F. We give some characterizations of F-perfect rings. For example, we show that a ring R is right F-perfect if and only if F-covers of finitely generated modules are projective. Moreover, we define F-perfect modules and investigate some properties of them.