Reducing the cost of RuO_(2)/TiO_(2)catalysts is still one of the urgent challenges in catalytic HCl oxidation.In the present work,a Ce-doped TiO_(2)supported RuO_(2)catalyst with a low Ru loading was developed,showin...Reducing the cost of RuO_(2)/TiO_(2)catalysts is still one of the urgent challenges in catalytic HCl oxidation.In the present work,a Ce-doped TiO_(2)supported RuO_(2)catalyst with a low Ru loading was developed,showing a high activity in the catalytic oxidation of HCl to Cl_(2).The results on some extensive characterizations of both Ce-doped TiO_(2)carriers and their supported RuO_(2)catalysts show that the doping of Ce into TiO_(2)can effectively change the lattice parameters of TiO_(2)to improve the dispersion of the active RuO_(2)species on the carrier,which facilitates the production of surface Ru species to expose more active sites for boosting the catalytic performance even under some harsh reaction conditions.This work provides some scientific basis and technical support for chlorine recycling.展开更多
Eu3+ions doped Zn(OH)F and ZnO micro-structures with specific morphologies were synthesized by a simple hydrothermal method only through altering the addition amount of NH4F and hexamethylenetetramine(HMT).The phase s...Eu3+ions doped Zn(OH)F and ZnO micro-structures with specific morphologies were synthesized by a simple hydrothermal method only through altering the addition amount of NH4F and hexamethylenetetramine(HMT).The phase structure,morphology and luminescence properties of the as-prepared samples were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),photoluminescence(PL)spectra and lifetime.The results indicate that the obtained Zn(OH)F:Eu^3+samples possess net-like and dandelion-like morphologies,which have an identical orthorhombic phase structure.It is found that the addition amount of raw materials such as NH4F and HMT plays a critical role for the formation of Zn(OH)F:Eu^3+.If the addition amounts of NH4F or HMT are reduced by half,the hexagonal ZnO:Eu^3+sample with peanut-like morphology can be obtained.Under the excitation of UV light,both the as-prepared Zn(OH)F:Eu^3+and ZnO:Eu^3+samples exhibit the characteristic emission of the doped Eu^3+.展开更多
The physicochemical properties of Pd and Pd-Pt catalysts which possess different Ce doping position were investigated by techniques of TEM, XRD, N2 adsorption-desorption, XPS and FT-IR. The catalytic performance for m...The physicochemical properties of Pd and Pd-Pt catalysts which possess different Ce doping position were investigated by techniques of TEM, XRD, N2 adsorption-desorption, XPS and FT-IR. The catalytic performance for methanol total oxidation was examined to study the effects of Ce adding position.CeO2-Al2 O3-TiO2(CAT) catalysts that Ce is directly introduced into support show higher reactivity and CO2 selectivity than CeO2/Al2 O3-TiO2(Ce/AT) samples in which Ce is loaded by impregnation method.The characterization results reveal that the Ce doping position does not cause obvious otherness of basic crystalline phase and mesoporous structure of support. However, the Ce doping position affects the pore shapes of support and then influences the pore diameter. CAT catalysts possess more abundant adsorbed oxygen and more Ti3+ can transform the more gaseous oxygen into the active oxygen species on the catalyst surface, which is beneficial to the reaction. The Al-O-Ti bridges in CAT facilitate the cooperation of Al and Ti species, which further speeds up the reaction rate.展开更多
In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied compara...In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied comparatively by various experimental techniques. The results showed that the NO conversion of V2O5-WO3/CeO2-TiO2 catalysts modified by co-precipitation method obviously increased with the Ce doping contents in the studied range below 20%(All Ce contents are in mass fractions), but the NO conversion of V2O5-WO3/CeO2/TiO2 catalysts modified by impregnation methods was lower than V2O5-WO3/CeO2-TiO2 catalysts especially beyond 2.5% Ce doping contents. The V2O5-WO3/CeO2-TiO2 catalysts showed better SCR activity, wider reaction window, and higher sulfur and water resistance. The characterization results elucidated that the modified catalysts by co-precipitation method exhibited higher specific surface area, much better dispersity of Ce component, more Ce^(3+)species and more Br?nsted acid sites than that by impregnation. The vacancies caused by more Ce^(3+)species were favorable for more NO oxidation to NO2, and the interaction between Ce species and WOxspecies generated more Br?nsted acid sites. It could be supposed that dispersed Ce Oxspecies and WOxspecies offered more second active centers respectively to adsorb oxygen and activate ammonia as co-catalysis to the primary active center of V ions, thus facilitated the better SCR activity of modified V2O5-WO3/CeO2-TiO2 catalysts by coprecipitation methods. The co-precipitation methods with Ce component were more suitable for production of modified commercial V2O5-WO3/TiO2 catalysts.展开更多
Ce and C-S codoped mesoporous TiO_(2)nanocomposites were synthesized via a sol-gel method integrated with an evaporation-induced self-assembly approach.The basic physicochemical characteristics of the synthetic sample...Ce and C-S codoped mesoporous TiO_(2)nanocomposites were synthesized via a sol-gel method integrated with an evaporation-induced self-assembly approach.The basic physicochemical characteristics of the synthetic samples were analyzed via a series of characterization techniques.The results reveal that C-S and Ce codoping on mesoporous TiO_(2)enhances the photocatalytic activity owing to the synergistic effect caused by narrowing the band gap,enhancing adsorption,trapping and transferring the excited e^(-)/h^(+)pairs and suppressing the recombination of e^(-)/h^(+)pairs.Furthermore,the obtained C,S-TiO_(2)/CeO_(2)materials exhibit large specific surface areas and numerous pores which not only effectively improve the adsorption-enrichment capability,but also supply multi-dimensional mass and electron transfer channels.The photodegradation efficiency of RhB by C,S-TiO_(2)/CeO_(2)within 40 min is nearly 100%,and its degradation efficiency is 6.63 times that of undoped TiO_(2).Recycling experiments show that mesoporous C,S-TiO_(2)/CeO_(2)shows excellent recoverability and stability.Furthermore,by trapping experiments,·O_(2)e^(-)/h^(+)and·OH are the predominant active species and a possible reaction mechanism is proposed.展开更多
Ce-doped nanosized ZnO desulfurizer was prepared by homogeneous precipitation,and its desulfurization efficiency at ambient temperature was investigated through dynamic experiments.The results showed that the desulfur...Ce-doped nanosized ZnO desulfurizer was prepared by homogeneous precipitation,and its desulfurization efficiency at ambient temperature was investigated through dynamic experiments.The results showed that the desulfurization activity of nanosized Ce-ZnO had improved greatly,compared to nanosized ZnO desulfurizer.Nanosized Ce-ZnO desulfurizer was characterized by XRD,TPD-MS,XPS,and TEM.The research results indicated that doping Ce decreased the particle size of the nanosized ZnO desulfurizer and ZnS was the principal desulfurization product.There were adsorption complexes of HS and S on the surface of desulfurizer as well.Only a small amount of vapor appeared in the tail gas on the condition of meeting the precision of desulfurization.展开更多
Ce–Zr solid solution(CexZr1-xO2,CZO)was prepared by the citric acid sol–gel method.The CZO was then used as a support for Pd/CZO catalysts for the oxidative carbonylation of phenol to diphenyl carbonate.The Pd/CZO c...Ce–Zr solid solution(CexZr1-xO2,CZO)was prepared by the citric acid sol–gel method.The CZO was then used as a support for Pd/CZO catalysts for the oxidative carbonylation of phenol to diphenyl carbonate.The Pd/CZO catalyst showed enhanced activity and diphenyl carbonate selectivity compared with the Pd/CeO2 catalyst.The catalytic performance of Pd/CZO was influenced by the calcination temperature of the CZO support.X-ray diffraction,scanning electron microscopy,N2 adsorption–desorption measurements,X-ray photoelectron spectroscopy and H2 temperature-programmed reduction measurements were used to investigate the effects of Zr doping and calcination temperature.The catalytic performance of Pd/CZO and Pd/CeO2 for the oxidative carbonylation of phenol was affected by several factors,including the specific surface area,Ce^3+and/or oxygen vacancy content,oxygen species type and Pd(II)content of the catalyst.All these properties were influenced by Zr doping and the calcination temperature of the CZO support.展开更多
In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-d...In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-doped nickel-based alloys, were prepared using vacuum induction melting(VIM) process and then exposed to the electrolysis in molten calcium chloride at 900C at à1.6 V versus graphite reference electrode for different immersion time. The surface and cross-section of the samples were characterized using scanning electron microscopy(SEM), and their electrochemical behavior was investigated by electrochemical impedance spectroscopy(EIS). The results show that the un-doped samples have greater number of voids and porosities as compared to that of the 0.0064 wt% Ce-doped samples(as the optimum content of cerium in the alloy). Thus, the nickel-based alloy becomes less sensitive to the pitting by addition of cerium. The corrosion penetration depth reaches about 244 mm after 16 h of electrolysis in the un-doped sample, while was approximately 103 mm for the 0.0064 wt% Ce-doped sample, which is an indication that the corrosion penetration depth decreases by adding small amounts of Ce.展开更多
To satisfy the application of different environments,grain boundary doping is commonly used in the preparation of sintered magnets to improve the coercivity and the corrosion resistance.In this paper,the alloys were p...To satisfy the application of different environments,grain boundary doping is commonly used in the preparation of sintered magnets to improve the coercivity and the corrosion resistance.In this paper,the alloys were prepared by mixing different ratios of the master alloy(Ce,Pr,Nd)-Fe-B and the sintering aid(Pr,Nd)-Al.The coercivity of sintered(Ce,Pr,Nd)-Fe-B magnet is substantially enhanced by doping 2 wt%of(Pr,Nd)-Al,while the maximum energy product decreases slightly.We systematically investigated the corrosion behavior and micro structure of the sintered magnets in order to determine the mechanism of the degradation.The sintered(Ce,Pr,Nd)-Fe-B magnets with 2 wt% of(Pr,Nd)-Al addition exhibit the decreasing corrosion rate compared with others,due to the distribution of intergranular phases.The electrode potential difference between the main phase and the RE-rich phase is reduced by the addition of Al,improving the potential and stability of RE-rich phase due to the higher electrode potential of Al than that of Nd,Pr or Ce.In addition,the element distribution of the magnets doped by(Pr,Nd)-Al indicates that the Al-rich shell formed at the marginal area of the Ce-rich phase improves its stability.Therefo re,intergranular adding te rnary(Pr,Nd)-Al alloy powders results in both high coe rcivity and good corrosion resistance synchronously.展开更多
Ce-doped ZnO films were prepared by the sol-gel method with spin coating onto glass substrates.Zinc acetate dihydrate,ethanol,diethanolamine and cerium nitrate hexahydrate were used as starting material,solvent,stabil...Ce-doped ZnO films were prepared by the sol-gel method with spin coating onto glass substrates.Zinc acetate dihydrate,ethanol,diethanolamine and cerium nitrate hexahydrate were used as starting material,solvent,stabilizer and dopant source,respectively.Structure and microstructure of the films were characterized with X-ray diffraction(XRD),field emission-scanning electron microscopy(FE-SEM) and the energy dispersive X-ray spectrometry(EDS).The infrared properties were also investigated.It was found that Ce-...展开更多
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined ...A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.展开更多
Cerium-doped MCM-48 molecular sieves were synthesized hydrothermally and characterized by X-ray diffraction, nitrogen adsorption, transmission electron microscope, FT-IR spectroscopy, UV-visible spectroscopy, and Rama...Cerium-doped MCM-48 molecular sieves were synthesized hydrothermally and characterized by X-ray diffraction, nitrogen adsorption, transmission electron microscope, FT-IR spectroscopy, UV-visible spectroscopy, and Raman spectroscopy. The results showed that all the samples held the structure of MCM-48, and Ce could enter the framework of MCM-48. However, when Ce/Si molar ratio in the sampies was high (0.04 or 0.059), there were CeO2 crystallites as secondary phase in the extraframework of MCM-48. Ce-doped MCM-48 was a very efficient catalyst for the oxidation of cyclohexane in a solvent-free system with oxygen as an oxidant. In the conditions of 0.5 MPa 02 and 413 K for 5 h, the conversion of cyclohexane was 8.1% over Ce-MCM-48-0.02, the total selectivity of cyclohexanol and cyclohaxnone was 98.7%. With an increase of Ce content, the conversion of cyclohexane and the selectivity to cyclohexanol decreased somewhat, but the selectivity to cyclohexanone increased.展开更多
The humidity sensitive characteristics of the sensor fabricated from Ce-doped nanoporous ZnO by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes were investigated at different sintering temp...The humidity sensitive characteristics of the sensor fabricated from Ce-doped nanoporous ZnO by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes were investigated at different sintering temperatures.The nanoporous thin films were prepared by sol-gel technique.It was found that the impedance of the sensor sintered at 600 oC changed more than four order of magnitude in the relative humidity(RH) range of 11%-95% at 25 oC.The response and recovery time of the sensor were about 13 and 17 s,respectively.The sensor showed high humidity sensitivity,rapid response and recovery,prominent stability,good repeatability and narrow hysteresis loop.These re-sults indicated that Ce-doped nanoporous ZnO thin films can be used in fabricating high-performance humidity sensors.展开更多
Monophasic Ce3+-doped yttrium aluminum garnet (Ce:YAG) nanoparticles with high crystallinity and tunable grain size ranging from -19-30 nm were prepared by a modified co-precipitation process with a follow-up calc...Monophasic Ce3+-doped yttrium aluminum garnet (Ce:YAG) nanoparticles with high crystallinity and tunable grain size ranging from -19-30 nm were prepared by a modified co-precipitation process with a follow-up calcination treatment. For the syn- thesis, aluminum, yttrium, and cerium nitrates were used as starting materials, ammonium sulfate as dispersant, and a combination of ammonium bicarbonate and ammonia as precipitating agent. Influence of precipitation temperature, the pH value of precipitant solu- tions, aging period, calcination conditions, and Ce-doping level were investigated for controlling the purity, particle size, and photo- luminescence performance of the Ce:YAG nanoparticles. High-purity YAG nanoparticles were prepared at pH= 10.50-11.00 and cal- cination temperatures of 850-1100 ~C with a calcination time of 3 h. With increasing Ce3+ concentration, the peak in the emission spectra of the obtained nanopowders shifted from 529 nm for the 0.67 wt.%-Ce:YAG to 544 nm for the 3.4 wt.%-Ce:YAG, while the strongest photoluminescence intensity was observed for the 1.3 wt.%-Ce:YAG nanoparticles.展开更多
Ce-doped titanium oxide nanoparticles were investigated in the paper. The surface structures of undoped and Ce-doped TiO2 nanoparticles were observed by scanning tunneling microscopy (STM). The experimental results ...Ce-doped titanium oxide nanoparticles were investigated in the paper. The surface structures of undoped and Ce-doped TiO2 nanoparticles were observed by scanning tunneling microscopy (STM). The experimental results of scanning tunneling spectroscopy (STS) show that the surface electronic structures of TiO2 nanoparticles are modified by introducing new electronic states in the surface band gap through cerium ion doping. The results are discussed in terms of the influence of doping concentration on the surface band gap of TiO2.展开更多
ZnO nanorods were synthesized using the sol-gel method, and the effects of annealing temperature and Ce doping on the morphologies and optical properties of ZnO nanostructures were investigated in detail. The XRD meas...ZnO nanorods were synthesized using the sol-gel method, and the effects of annealing temperature and Ce doping on the morphologies and optical properties of ZnO nanostructures were investigated in detail. The XRD measurements showed that the as-synthesized ZnO nanostructures had a hexagonal wurtzite structure. SEM images showed that uniform nanorods formed at 900 °C. Photoluminescence measurements showed an ultraviolet emission peak and a relatively broad visible light emission peak for the samples sintered at different temperatures. The UV emission peak bathochromically shifted when the annealing temperature rose from 850 to 1000 °C. Ce doping decreased the synthesized temperature of the ZnO nanorods to 500 °C, and the UV peaks hypsochromically shifted.展开更多
In order to investigate the effect of Ce-doping on the catalysts derived from hydrotalcite-like precursors for carbonyl sulfide(COS) hydrolysis,a series of Zn-Ni-Al-Ce hydrotalcite-like compounds were prepared by co-p...In order to investigate the effect of Ce-doping on the catalysts derived from hydrotalcite-like precursors for carbonyl sulfide(COS) hydrolysis,a series of Zn-Ni-Al-Ce hydrotalcite-like compounds were prepared by co-precipitation method and the catalytic activity of their derived composite oxides were studied at 50 oC.The effect on the structural properties caused by Ce doping was studied by the X-ray diffractometer(XRD),scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS).The catalytic activities results showed that addition of Ce enhanced the catalytic activities significantly,but excessive Ce-doping had a negative effect on COS hydrolysis.XRD,SEM and EDS results illustrated that,compared with the Ce-free sample,the particle size of oxide solids decreased and the degree of dispersion increased due to Ce doping.展开更多
A series of KY3F10 nanophosphors doped with Gd3+, Ce3+ and Eu3+ ions were obtained with the use of a co-precipitation method. The resulting products were white precipitates, consisting of spherical particles with d...A series of KY3F10 nanophosphors doped with Gd3+, Ce3+ and Eu3+ ions were obtained with the use of a co-precipitation method. The resulting products were white precipitates, consisting of spherical particles with diameter about 150-200 nm, which was confirmed using transmission electron microscopy (TEM) technique. Powder X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) measurements confirmed appropriate structures of the nanoparticles obtained. Spectroscopic properties of the prod- ucts were examined on the basis of the measured excitation/emission spectra and luminescence decay curves. The synthesized sam- ples showed orange-red luminescence, characteristic for Eu3+ ions. The reaction process was performed in required alkaline pH ad- justed with the use of ethylenediaminetetraacetic acid (EDTA) and potassium hydroxide. The samples containing large amounts of Gd3+ dooant ions exhibited a tendencv to form nroducts with different momhologies.展开更多
Near-infrared to visible upconversion luminescence was observed in a multicomponent silicate (BK7) glass containing Ce^3 + ions under focused infrared femtosecond laser irradiation. The emission spectra show that t...Near-infrared to visible upconversion luminescence was observed in a multicomponent silicate (BK7) glass containing Ce^3 + ions under focused infrared femtosecond laser irradiation. The emission spectra show that the upconversion luminescence comes from the 4f-5d transition of the Ce^3 + ions. The relationship between the intensity of the Ce^3 + emission and the pump power reveals that a three-photon absorption predominates in the conversion process from the near-infrared into the blue luminescence. The analysis of the upconversion mechanism suggests that the upconversion luminescence may come from a three-photon simultaneous absorption that leads to a population of the 5d level in which the characteristic luminescence occurs.展开更多
基金supported by Zhejiang Provincial Key R&D Project(No.2021C01056)the Programme of Introducing Talents of Discipline to Universities(No.D17008).
文摘Reducing the cost of RuO_(2)/TiO_(2)catalysts is still one of the urgent challenges in catalytic HCl oxidation.In the present work,a Ce-doped TiO_(2)supported RuO_(2)catalyst with a low Ru loading was developed,showing a high activity in the catalytic oxidation of HCl to Cl_(2).The results on some extensive characterizations of both Ce-doped TiO_(2)carriers and their supported RuO_(2)catalysts show that the doping of Ce into TiO_(2)can effectively change the lattice parameters of TiO_(2)to improve the dispersion of the active RuO_(2)species on the carrier,which facilitates the production of surface Ru species to expose more active sites for boosting the catalytic performance even under some harsh reaction conditions.This work provides some scientific basis and technical support for chlorine recycling.
基金Project supported by the National Natural Science Foundation of China(51572303)
文摘Eu3+ions doped Zn(OH)F and ZnO micro-structures with specific morphologies were synthesized by a simple hydrothermal method only through altering the addition amount of NH4F and hexamethylenetetramine(HMT).The phase structure,morphology and luminescence properties of the as-prepared samples were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),photoluminescence(PL)spectra and lifetime.The results indicate that the obtained Zn(OH)F:Eu^3+samples possess net-like and dandelion-like morphologies,which have an identical orthorhombic phase structure.It is found that the addition amount of raw materials such as NH4F and HMT plays a critical role for the formation of Zn(OH)F:Eu^3+.If the addition amounts of NH4F or HMT are reduced by half,the hexagonal ZnO:Eu^3+sample with peanut-like morphology can be obtained.Under the excitation of UV light,both the as-prepared Zn(OH)F:Eu^3+and ZnO:Eu^3+samples exhibit the characteristic emission of the doped Eu^3+.
基金Project supported by the Key Program of National Natural Science Foundation of China(21336006)the Shanxi Province Scientific and Technological Project(20140313002-2)
文摘The physicochemical properties of Pd and Pd-Pt catalysts which possess different Ce doping position were investigated by techniques of TEM, XRD, N2 adsorption-desorption, XPS and FT-IR. The catalytic performance for methanol total oxidation was examined to study the effects of Ce adding position.CeO2-Al2 O3-TiO2(CAT) catalysts that Ce is directly introduced into support show higher reactivity and CO2 selectivity than CeO2/Al2 O3-TiO2(Ce/AT) samples in which Ce is loaded by impregnation method.The characterization results reveal that the Ce doping position does not cause obvious otherness of basic crystalline phase and mesoporous structure of support. However, the Ce doping position affects the pore shapes of support and then influences the pore diameter. CAT catalysts possess more abundant adsorbed oxygen and more Ti3+ can transform the more gaseous oxygen into the active oxygen species on the catalyst surface, which is beneficial to the reaction. The Al-O-Ti bridges in CAT facilitate the cooperation of Al and Ti species, which further speeds up the reaction rate.
基金Project supported by the Guangxi Natural Science Foundation(2014GXNSFAA118057)Guangxi Science and Technology Planning Project(AB16380276)
文摘In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied comparatively by various experimental techniques. The results showed that the NO conversion of V2O5-WO3/CeO2-TiO2 catalysts modified by co-precipitation method obviously increased with the Ce doping contents in the studied range below 20%(All Ce contents are in mass fractions), but the NO conversion of V2O5-WO3/CeO2/TiO2 catalysts modified by impregnation methods was lower than V2O5-WO3/CeO2-TiO2 catalysts especially beyond 2.5% Ce doping contents. The V2O5-WO3/CeO2-TiO2 catalysts showed better SCR activity, wider reaction window, and higher sulfur and water resistance. The characterization results elucidated that the modified catalysts by co-precipitation method exhibited higher specific surface area, much better dispersity of Ce component, more Ce^(3+)species and more Br?nsted acid sites than that by impregnation. The vacancies caused by more Ce^(3+)species were favorable for more NO oxidation to NO2, and the interaction between Ce species and WOxspecies generated more Br?nsted acid sites. It could be supposed that dispersed Ce Oxspecies and WOxspecies offered more second active centers respectively to adsorb oxygen and activate ammonia as co-catalysis to the primary active center of V ions, thus facilitated the better SCR activity of modified V2O5-WO3/CeO2-TiO2 catalysts by coprecipitation methods. The co-precipitation methods with Ce component were more suitable for production of modified commercial V2O5-WO3/TiO2 catalysts.
基金Project supported by the National Natural Science Foundation of China(41831285,51974261)Doctoral Research Initiation Project(YBZ202127)from Xichang University。
文摘Ce and C-S codoped mesoporous TiO_(2)nanocomposites were synthesized via a sol-gel method integrated with an evaporation-induced self-assembly approach.The basic physicochemical characteristics of the synthetic samples were analyzed via a series of characterization techniques.The results reveal that C-S and Ce codoping on mesoporous TiO_(2)enhances the photocatalytic activity owing to the synergistic effect caused by narrowing the band gap,enhancing adsorption,trapping and transferring the excited e^(-)/h^(+)pairs and suppressing the recombination of e^(-)/h^(+)pairs.Furthermore,the obtained C,S-TiO_(2)/CeO_(2)materials exhibit large specific surface areas and numerous pores which not only effectively improve the adsorption-enrichment capability,but also supply multi-dimensional mass and electron transfer channels.The photodegradation efficiency of RhB by C,S-TiO_(2)/CeO_(2)within 40 min is nearly 100%,and its degradation efficiency is 6.63 times that of undoped TiO_(2).Recycling experiments show that mesoporous C,S-TiO_(2)/CeO_(2)shows excellent recoverability and stability.Furthermore,by trapping experiments,·O_(2)e^(-)/h^(+)and·OH are the predominant active species and a possible reaction mechanism is proposed.
基金Project supported by the National Natural Science Foundation of China(50478026)
文摘Ce-doped nanosized ZnO desulfurizer was prepared by homogeneous precipitation,and its desulfurization efficiency at ambient temperature was investigated through dynamic experiments.The results showed that the desulfurization activity of nanosized Ce-ZnO had improved greatly,compared to nanosized ZnO desulfurizer.Nanosized Ce-ZnO desulfurizer was characterized by XRD,TPD-MS,XPS,and TEM.The research results indicated that doping Ce decreased the particle size of the nanosized ZnO desulfurizer and ZnS was the principal desulfurization product.There were adsorption complexes of HS and S on the surface of desulfurizer as well.Only a small amount of vapor appeared in the tail gas on the condition of meeting the precision of desulfurization.
基金supported by the National Natural Science Foundation of China(21776057)the Natural Science Foundation of Tianjin City(Nos.17JCYBJC20100,18JCYBJC21500)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Hebei Province(CL201605)。
文摘Ce–Zr solid solution(CexZr1-xO2,CZO)was prepared by the citric acid sol–gel method.The CZO was then used as a support for Pd/CZO catalysts for the oxidative carbonylation of phenol to diphenyl carbonate.The Pd/CZO catalyst showed enhanced activity and diphenyl carbonate selectivity compared with the Pd/CeO2 catalyst.The catalytic performance of Pd/CZO was influenced by the calcination temperature of the CZO support.X-ray diffraction,scanning electron microscopy,N2 adsorption–desorption measurements,X-ray photoelectron spectroscopy and H2 temperature-programmed reduction measurements were used to investigate the effects of Zr doping and calcination temperature.The catalytic performance of Pd/CZO and Pd/CeO2 for the oxidative carbonylation of phenol was affected by several factors,including the specific surface area,Ce^3+and/or oxygen vacancy content,oxygen species type and Pd(II)content of the catalyst.All these properties were influenced by Zr doping and the calcination temperature of the CZO support.
文摘In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-doped nickel-based alloys, were prepared using vacuum induction melting(VIM) process and then exposed to the electrolysis in molten calcium chloride at 900C at à1.6 V versus graphite reference electrode for different immersion time. The surface and cross-section of the samples were characterized using scanning electron microscopy(SEM), and their electrochemical behavior was investigated by electrochemical impedance spectroscopy(EIS). The results show that the un-doped samples have greater number of voids and porosities as compared to that of the 0.0064 wt% Ce-doped samples(as the optimum content of cerium in the alloy). Thus, the nickel-based alloy becomes less sensitive to the pitting by addition of cerium. The corrosion penetration depth reaches about 244 mm after 16 h of electrolysis in the un-doped sample, while was approximately 103 mm for the 0.0064 wt% Ce-doped sample, which is an indication that the corrosion penetration depth decreases by adding small amounts of Ce.
基金the National Natural Science Foundation of China(51871063,51590882)the Open Projects of State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization。
文摘To satisfy the application of different environments,grain boundary doping is commonly used in the preparation of sintered magnets to improve the coercivity and the corrosion resistance.In this paper,the alloys were prepared by mixing different ratios of the master alloy(Ce,Pr,Nd)-Fe-B and the sintering aid(Pr,Nd)-Al.The coercivity of sintered(Ce,Pr,Nd)-Fe-B magnet is substantially enhanced by doping 2 wt%of(Pr,Nd)-Al,while the maximum energy product decreases slightly.We systematically investigated the corrosion behavior and micro structure of the sintered magnets in order to determine the mechanism of the degradation.The sintered(Ce,Pr,Nd)-Fe-B magnets with 2 wt% of(Pr,Nd)-Al addition exhibit the decreasing corrosion rate compared with others,due to the distribution of intergranular phases.The electrode potential difference between the main phase and the RE-rich phase is reduced by the addition of Al,improving the potential and stability of RE-rich phase due to the higher electrode potential of Al than that of Nd,Pr or Ce.In addition,the element distribution of the magnets doped by(Pr,Nd)-Al indicates that the Al-rich shell formed at the marginal area of the Ce-rich phase improves its stability.Therefo re,intergranular adding te rnary(Pr,Nd)-Al alloy powders results in both high coe rcivity and good corrosion resistance synchronously.
基金supported by the National 863 Research Project (2006AA03Z219)Natural Science Foundation of Jiangsu Province (BK2007199)Foundation for "Liu Da Ren Cai" of Jiangsu Province (06-E-021)
文摘Ce-doped ZnO films were prepared by the sol-gel method with spin coating onto glass substrates.Zinc acetate dihydrate,ethanol,diethanolamine and cerium nitrate hexahydrate were used as starting material,solvent,stabilizer and dopant source,respectively.Structure and microstructure of the films were characterized with X-ray diffraction(XRD),field emission-scanning electron microscopy(FE-SEM) and the energy dispersive X-ray spectrometry(EDS).The infrared properties were also investigated.It was found that Ce-...
基金supported by the National Natural Science Foundation of China (Grant No. 51078185)
文摘A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.
基金the National Basic Research Program of China (2004CB719500)the Commission of Science and Technology of Shanghai Municipality (06DJ14006)Shanghai Municipal Education Commission (2008CG35)
文摘Cerium-doped MCM-48 molecular sieves were synthesized hydrothermally and characterized by X-ray diffraction, nitrogen adsorption, transmission electron microscope, FT-IR spectroscopy, UV-visible spectroscopy, and Raman spectroscopy. The results showed that all the samples held the structure of MCM-48, and Ce could enter the framework of MCM-48. However, when Ce/Si molar ratio in the sampies was high (0.04 or 0.059), there were CeO2 crystallites as secondary phase in the extraframework of MCM-48. Ce-doped MCM-48 was a very efficient catalyst for the oxidation of cyclohexane in a solvent-free system with oxygen as an oxidant. In the conditions of 0.5 MPa 02 and 413 K for 5 h, the conversion of cyclohexane was 8.1% over Ce-MCM-48-0.02, the total selectivity of cyclohexanol and cyclohaxnone was 98.7%. With an increase of Ce content, the conversion of cyclohexane and the selectivity to cyclohexanol decreased somewhat, but the selectivity to cyclohexanone increased.
文摘The humidity sensitive characteristics of the sensor fabricated from Ce-doped nanoporous ZnO by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes were investigated at different sintering temperatures.The nanoporous thin films were prepared by sol-gel technique.It was found that the impedance of the sensor sintered at 600 oC changed more than four order of magnitude in the relative humidity(RH) range of 11%-95% at 25 oC.The response and recovery time of the sensor were about 13 and 17 s,respectively.The sensor showed high humidity sensitivity,rapid response and recovery,prominent stability,good repeatability and narrow hysteresis loop.These re-sults indicated that Ce-doped nanoporous ZnO thin films can be used in fabricating high-performance humidity sensors.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2013AA031901)the Natural Science Foundation of China(51202110)+1 种基金the Natural Science Foundation of Jiangsu Province(BK2012426)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Monophasic Ce3+-doped yttrium aluminum garnet (Ce:YAG) nanoparticles with high crystallinity and tunable grain size ranging from -19-30 nm were prepared by a modified co-precipitation process with a follow-up calcination treatment. For the syn- thesis, aluminum, yttrium, and cerium nitrates were used as starting materials, ammonium sulfate as dispersant, and a combination of ammonium bicarbonate and ammonia as precipitating agent. Influence of precipitation temperature, the pH value of precipitant solu- tions, aging period, calcination conditions, and Ce-doping level were investigated for controlling the purity, particle size, and photo- luminescence performance of the Ce:YAG nanoparticles. High-purity YAG nanoparticles were prepared at pH= 10.50-11.00 and cal- cination temperatures of 850-1100 ~C with a calcination time of 3 h. With increasing Ce3+ concentration, the peak in the emission spectra of the obtained nanopowders shifted from 529 nm for the 0.67 wt.%-Ce:YAG to 544 nm for the 3.4 wt.%-Ce:YAG, while the strongest photoluminescence intensity was observed for the 1.3 wt.%-Ce:YAG nanoparticles.
文摘Ce-doped titanium oxide nanoparticles were investigated in the paper. The surface structures of undoped and Ce-doped TiO2 nanoparticles were observed by scanning tunneling microscopy (STM). The experimental results of scanning tunneling spectroscopy (STS) show that the surface electronic structures of TiO2 nanoparticles are modified by introducing new electronic states in the surface band gap through cerium ion doping. The results are discussed in terms of the influence of doping concentration on the surface band gap of TiO2.
基金the National Natural Science Foundation of China(No.60778040)the Hi-tech Research and Development Program of China(No.2007AA032400448)+3 种基金the Science and Technology Bureau of Jilin Province(No.20060518)Gifted Youth Program of Jilin Province(No.20060123)the Science and Technology Office of Education of Jilin Province(No.2007162)the Science and Technology Bureau of Key Program for Ministry of Education(No.207025).
文摘ZnO nanorods were synthesized using the sol-gel method, and the effects of annealing temperature and Ce doping on the morphologies and optical properties of ZnO nanostructures were investigated in detail. The XRD measurements showed that the as-synthesized ZnO nanostructures had a hexagonal wurtzite structure. SEM images showed that uniform nanorods formed at 900 °C. Photoluminescence measurements showed an ultraviolet emission peak and a relatively broad visible light emission peak for the samples sintered at different temperatures. The UV emission peak bathochromically shifted when the annealing temperature rose from 850 to 1000 °C. Ce doping decreased the synthesized temperature of the ZnO nanorods to 500 °C, and the UV peaks hypsochromically shifted.
基金Project supported by National Natural Science Foundation (50908110)National High Technology Research and Development Program of China (2008AA062602)+1 种基金China Postdoctoral Science Foundation (20090451431)Young and Middle-aged Academic and Technical Back-up Personnel Program of Yunnan Province (2007PY01-10)
文摘In order to investigate the effect of Ce-doping on the catalysts derived from hydrotalcite-like precursors for carbonyl sulfide(COS) hydrolysis,a series of Zn-Ni-Al-Ce hydrotalcite-like compounds were prepared by co-precipitation method and the catalytic activity of their derived composite oxides were studied at 50 oC.The effect on the structural properties caused by Ce doping was studied by the X-ray diffractometer(XRD),scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS).The catalytic activities results showed that addition of Ce enhanced the catalytic activities significantly,but excessive Ce-doping had a negative effect on COS hydrolysis.XRD,SEM and EDS results illustrated that,compared with the Ce-free sample,the particle size of oxide solids decreased and the degree of dispersion increased due to Ce doping.
基金Project supported by the Polish National Science Centre(2015/17/N/ST5/01947)
文摘A series of KY3F10 nanophosphors doped with Gd3+, Ce3+ and Eu3+ ions were obtained with the use of a co-precipitation method. The resulting products were white precipitates, consisting of spherical particles with diameter about 150-200 nm, which was confirmed using transmission electron microscopy (TEM) technique. Powder X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) measurements confirmed appropriate structures of the nanoparticles obtained. Spectroscopic properties of the prod- ucts were examined on the basis of the measured excitation/emission spectra and luminescence decay curves. The synthesized sam- ples showed orange-red luminescence, characteristic for Eu3+ ions. The reaction process was performed in required alkaline pH ad- justed with the use of ethylenediaminetetraacetic acid (EDTA) and potassium hydroxide. The samples containing large amounts of Gd3+ dooant ions exhibited a tendencv to form nroducts with different momhologies.
基金Project supported bythe National Natural Science Foundation of China (50125258 and 60377040)
文摘Near-infrared to visible upconversion luminescence was observed in a multicomponent silicate (BK7) glass containing Ce^3 + ions under focused infrared femtosecond laser irradiation. The emission spectra show that the upconversion luminescence comes from the 4f-5d transition of the Ce^3 + ions. The relationship between the intensity of the Ce^3 + emission and the pump power reveals that a three-photon absorption predominates in the conversion process from the near-infrared into the blue luminescence. The analysis of the upconversion mechanism suggests that the upconversion luminescence may come from a three-photon simultaneous absorption that leads to a population of the 5d level in which the characteristic luminescence occurs.