期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Deep Look into Extractive Text Summarization
1
作者 Jhonathan Quillo-Espino Rosa María Romero-González Ana-Marcela Herrera-Navarro 《Journal of Computer and Communications》 2021年第6期24-37,共14页
This investigation has presented an approach to Extractive Automatic Text Summarization (EATS). A framework focused on the summary of a single document has been developed, using the Tf-ldf method (Frequency Term, Inve... This investigation has presented an approach to Extractive Automatic Text Summarization (EATS). A framework focused on the summary of a single document has been developed, using the Tf-ldf method (Frequency Term, Inverse Document Frequency) as a reference, dividing the document into a subset of documents and generating value of each of the words contained in each document, those documents that show Tf-Idf equal or higher than the threshold are those that represent greater importance, therefore;can be weighted and generate a text summary according to the user’s request. This document represents a derived model of text mining application in today’s world. We demonstrate the way of performing the summarization. Random values were used to check its performance. The experimented results show a satisfactory and understandable summary and summaries were found to be able to run efficiently and quickly, showing which are the most important text sentences according to the threshold selected by the user. 展开更多
关键词 text Mining Preprocesses text Summarization extractive text sumarization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部