一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家...一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家赫拉克利特所说的“万物流转”,又说“你不能两次踏进同一条河流,因为新的水不断地流过你的身旁”,他所表达的意思是“世界上唯一不变的就是变化”。展开更多
The effects of styrene-butadiene-styrene(SBS)pre-swelling/extraction process and the incorporation of C9 petroleum resin on the anti-aging performance of modified asphalt were systematically evaluated by characterizin...The effects of styrene-butadiene-styrene(SBS)pre-swelling/extraction process and the incorporation of C9 petroleum resin on the anti-aging performance of modified asphalt were systematically evaluated by characterizing the physical indexes,chemical compositions and rheological parameters.The experimental results show that the SBS pre-swelling/extraction process and the incorporation of C9 petroleum resin improve the dispersion performance of SBS in asphalt as well as the strength of SBS polymer network structures,and the synergistic effects decrease the volatilization degree of asphalt lightweight components and the degradation rate of SBS during the aging process.The anti-aging performance of SBS modified asphalt(SBSMA)was significantly enhanced by SBS pre-swelling/extraction process compounded with the incorporation of C9 petroleum resin,and the anti-aging effect was gradually enhanced with the increase of C9 petroleum resin content.展开更多
[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin cont...[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin content and dry extract yield as evaluation indicators,the main influencing factors and level range of the extraction process of Qingdu Jianpi Mixture were determined on the basis of single factor test method,and the optimal weight coefficient was screened by AHP-entropy method mixed with weighting method.Combined with L_(9)(3^(4))orthogonal experiment,the best extraction process was obtained.At the same time,thin-layer chromatographic identification was used to identify Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal liquid.[Results]The best extraction process:add 1:12 water to the prescription decoction pieces,extract under reflux for 2 times,1.5 h per time,and combine the filtrate to 250 mL.Thin layer chromatography analysis showed that the spots of Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal solution were the same as those of reference substances at the corresponding positions,and the negative control had no interference.[Conclusions]The experimental method is reasonable and feasible,and the process is reliable,which can provide experimental reference for the subsequent application of in-hospital preparations and research and development of Qingdu Jianpi Mixture.展开更多
This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions....This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.展开更多
Objective To optimize the ultrasonic extraction process for benzoic acid as a harmful substance in Paeonia lactiflora Pall.(P.lactiflora Pall.).Methods Methanol and ethanol solutions at different concentration gradien...Objective To optimize the ultrasonic extraction process for benzoic acid as a harmful substance in Paeonia lactiflora Pall.(P.lactiflora Pall.).Methods Methanol and ethanol solutions at different concentration gradients(25,50,75%)were prepared to investigate the effects of extraction solvents on the extraction efficiency of benzoic acid.The influences of ultrasonic frequency(35,50 Hz),ultrasonic power(40,60,80,100 W),ultrasonic time(10,20,30,40,50,60 minutes),and ultrasonic temperature(20,30,40,50℃)on the extraction efficiency were examined.Orthogonal experiments were conducted to analyze the effects of temperature,time,and ultrasonic power on the extraction efficiency and to screen the optimal ultrasonic extraction process.Results Various influencing factors had certain effects on the extraction efficiency of benzoic acid from P.lactiflora Pall.Single-factor analysis revealed that 25%methanol,ultrasonic frequency of 50 Hz,ultrasonic power of 40 W,ultrasonic time of 10minutes,and ultrasonic temperature of 30℃yielded the highest extraction efficiency for benzoic acid.The order of influence of different factors on the extraction efficiency was temperature>time>power.The optimal conditions obtained from orthogonal experiments were:extraction solvent of 25%methanol,ultrasonic frequency of 50 Hz,ultrasonic time of 20 minutes,ultrasonic power of 40 W,and ultrasonic temperature of 30℃.Conclusion Under the conditions of 25%methanol as the extraction solvent,ultrasonic frequency of 50 Hz,ultrasonic time of 20 minutes,ultrasonic power of 40 W,and ultrasonic temperature of 30℃,the extraction efficiency of benzoic acid from P.lactiflora Pall.was the highest.This method offers advantages such as simple operation,small sample size requirement,and low solvent consumption,providing a reliable analytical approach for quality control and safety evaluation of P.lactiflora Pall.展开更多
This paper systematically categorizes the primary composition of star anise(Illicium verum),including volatile oils,flavonoids,phenolic acids,and sesquiterpene lactones,and further analyzes the pharmacological activit...This paper systematically categorizes the primary composition of star anise(Illicium verum),including volatile oils,flavonoids,phenolic acids,and sesquiterpene lactones,and further analyzes the pharmacological activities,such as antibacterial,analgesic,anti-inflammatory,and antioxidant effects.Additionally,it summarizes key aspects of extraction techniques,analytical methods,and fresh material processing technologies.The objective is to provide a robust foundation for enhancing research methods and technological standards related to star anise,thereby improving resource utilization efficiency and facilitating its industrial applications.展开更多
[Objectives]To investigate the optimal extraction conditions for anthocyanins from defatted Lycium ruthenicum Murray using ultrasonic-assisted solvent extraction.[Methods]Anthocyanins were extracted from wild L.ruthen...[Objectives]To investigate the optimal extraction conditions for anthocyanins from defatted Lycium ruthenicum Murray using ultrasonic-assisted solvent extraction.[Methods]Anthocyanins were extracted from wild L.ruthenicum in Qinghai Province using ultrasonic-assisted ethanol extraction.Through single-factor and orthogonal experiments,the optimal extraction conditions were determined as follows:temperature 50℃,solid-liquid ratio 1:15(g/mL),ethanol concentration 60%(v/v),and ultrasonic extraction time 25 min.Under these conditions,the anthocyanin content of L.ruthenicum was quantified by UV-Vis spectrophotometry at 280 nm.[Results]The extraction yield of anthocyanins from wild Qinghai L.ruthenicum was 17.0 mg/g,which is superior to the yield of 10.0 mg/g obtained by water solvent extraction,representing a 0.7%increase in extraction rate.The anthocyanin content in L.ruthenicum from different regions was determined,revealing that samples from the Chaidamu area in Qinghai had the highest content(17.3 mg/g),while samples from the Gansu area had the lowest(12.0 mg/g).[Conclusions]Ultrasonic-assisted ethanol extraction technology offers advantages including rapid operation,low energy consumption,high extraction yield,simple detection,and safety.展开更多
Bio-oil is a renewable fuel that can be obtained from biomass waste,such as empty palm fruit bunches,sugarcane bagasse,and rice husks.Within a biorefinery framework,bio-oil had not met the standards as a fuel due to t...Bio-oil is a renewable fuel that can be obtained from biomass waste,such as empty palm fruit bunches,sugarcane bagasse,and rice husks.Within a biorefinery framework,bio-oil had not met the standards as a fuel due to the presence of impurities like corrosive phenol.Therefore,the separation of phenol from bio-oil is essential and can be achieved using the extraction method.In this study,biomass wastes(empty fruit bunches of oil palm,sugarcane bagasse,and rice husk)were pyrolyzed in a biorefinery framework to produce bio-oil,which was then refined through liquid-liquid extraction with a methanol-chloroform and ethyl acetate solvents to remove its phenolic compound.The extraction with methanol-chloroform solvent was carried out for 1 h at 50℃.Meanwhile,extraction with ethyl acetate solvent was carried out for 3 h at 70℃.Both extractions used the same variations,i.e.,bio-oil:solvent ratio at 1:1,1:2,1:3,and 1:4,and stirring speeds of 150 rpm,200 rpm,250 rpm,and 300 rpm.The bio-oil obtained from this study contained complex chemical compounds and had characteristics such as a pH of 5,a density of 1.116 g/mL,and a viscosity of 29.57 cSt.Theoptimization results using response surface methodology(RSM)showed that the best yield formethanolchloroform was 72.98%at a stirring speed of 250 rpm and a ratio of 1:3.As for ethyl acetate solvent,the highest yield obtained was 71.78%at a stirring speed of 237.145 rpm and a ratio of 1:2.展开更多
Innovating distillation technology to improve the efficiency of distillation equipment,reduce energy consumption,and increase product purity is an important challenge for the rapid development of the distillation indu...Innovating distillation technology to improve the efficiency of distillation equipment,reduce energy consumption,and increase product purity is an important challenge for the rapid development of the distillation industry.In this paper,steady-state simulations are developed for the separated isopropanol and water systems,and the sensitive temperature stage locations are determined using sensitivity and singular value decomposition(SVD).An open-loop steady-state gain analysis of the isopropanol/water system was performed,and a series of dynamic control schemes were designed and optimized to resist±10% feed flow disturbances and ±5% feed composition disturbances,comparing the performance of the control schemes one by one through IAE error analysis.The results show that the side-stream extractive distillation separation of isopropanol and water system using a single temperature fixed reflux ratio control loop suffers from a large product shift problem.One of the key control loops is to control the isopropanol purity by controlling the bottom of the column flow rate,and the scheme performs well under both single-temperature control and dual-temperature control,effectively resisting ±10% feed flow disturbances and ±5% feed composition disturbances.The improvement of product purity can be seen from the compone nt controllers play an important role,while the feed-fo rward effect under certain conditions can also enable the system to quickly restore stability and improve the system response speed.展开更多
Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representati...Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.展开更多
Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis wa...Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis was performed for a coal-to-carbonfiber manufacture process developed at the University of Kentucky’s Center for Applied Energy Research.According to this process,coal,with decant oil as the solvent,was converted to mesophase pitch via solvent extraction,and the mesophase pitch was subsequently converted to carbon fiber.The total cost to produce carbon fibers from coal and decant oil via the solvent extraction process was estimated to be$11.50/kg for 50,000-tow pitch carbon fiber with a production volume of 3750 MT/year.The estimated carbon fiber cost was significantly lower than the current commercially available PAN-based carbon fiber price($20–$30/kg).With decant oil recycling rates of 50%and 70%in the solvent extraction process,the manufacturing cost of carbon fiber was estimated to be$9.90/kg and$9.50/kg of carbon fiber,respectively.A cradle-to-gate energy assessment revealed that carbon fiber derived from coal exhibited an embodied energy of 510 MJ/kg,significantly lower than that of conventionally produced carbon fiber from PAN.This notable difference is primarily attributed to the substantially higher conversion rate of coal-based mesophase pitch fibers into carbon fiber,surpassing PAN fibers by 1.6 times.These findings indicate that using coal for carbon fiber production through solvent extraction methods could offer a more energy-efficient and cost-competitive alternative to the traditional PAN based approach.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth...With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction.展开更多
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental con...Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt b...To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.展开更多
AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longit...AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longitudinal observational study,detailed medical histories of APAC patients and comprehensive ophthalmic examinations at final followup were collected.Logistic regression analysis was performed to identify predictors of blindness.Univariate and multivariate linear regression analyses were conducted to determine risk factors associated with visual outcomes.RESULTS:This study included 39 affected eyes of 31 subjects(26 females)with an average age of 74.1±8.0y.At 6.7±4.2y after APAC attack,2(5.7%)eyes had bestcorrected visual acuity(VA)worse than 3/60.Advanced glaucomatous visual field loss was observed in 15(39.5%)affected eyes and 5(25.0%)fellow eyes.Nine affected eyes(23.7%)had GON,and 11(28.9%)were blind.Six(15.4%)affected eyes and 2(9.1%)fellow eyes had suspicious progression.A significantly higher blindness rate in factory workers compared to office workers.Logistic regression identified that worse VA at attack(OR 10.568,95%CI 1.288-86.695;P=0.028)and worse early postoperative VA(OR 13.214,95%CI 1.157-150.881;P=0.038)were risk factors for blindness.Multivariate regression showed that longer duration of elevated intraocular pressure(P=0.004)and worse early postoperative VA(P=0.009)were associated with worse visual outcomes.CONCLUSION:Despite LE surgery,some APAC patients experience continued visual function deterioration.Lifelong monitoring is necessary.Target pressure and progression rates should be re-evaluated during follow-up.展开更多
High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as not...High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as notable solid-state welding and processing techniques,have been proved effectiveness in enhancing microstructures and mechanical properties of HEAs.This review article summarizes the current status of FSW/P of HEAs.The welding materials and conditions used for FSW/P in HEAs are reviewed and discussed.The effects of FSW/P on the evolutions of grain structure,texture,dislocation,and secondary phase for different HEAs are highlighted.Furthermore,the influences of FSW/P on the mechanical properties of various HEAs are analyzed.Finally,potential applications,challenges,and future directions of FSW/P in HEAs are forecasted.Overall,FSW/P enable to refine grains of HEAs through dynamic recrystallization and to activate diverse deformation mechanisms of HEAs through tailoring phase structures,thereby significantly improving the strength,hardness,and ductility of both single-and dual-phase HEAs.Future progress in this field will rely on comprehensive optimization of processing parameters and alloy composition,integration of multi-scale modeling with advanced characterization for in-depth exploration of microstructural mechanisms,systematic evaluation of functional properties,and effective bridging of the gap between laboratory research and industrial application.The review aims to provide an overview of recent advancements in the FSW/P of HEAs and encourage further research in this area.展开更多
文摘一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家赫拉克利特所说的“万物流转”,又说“你不能两次踏进同一条河流,因为新的水不断地流过你的身旁”,他所表达的意思是“世界上唯一不变的就是变化”。
基金Fnded by the National Key Research and Development Program of China(No.2023YFC3807202)the Key Research and Development Plan in Hubei Province of China(Nos.2022BCA082 and 2024BAB108)the Annual Research Project of China Railway Construction Corporation(No.2023-B03)。
文摘The effects of styrene-butadiene-styrene(SBS)pre-swelling/extraction process and the incorporation of C9 petroleum resin on the anti-aging performance of modified asphalt were systematically evaluated by characterizing the physical indexes,chemical compositions and rheological parameters.The experimental results show that the SBS pre-swelling/extraction process and the incorporation of C9 petroleum resin improve the dispersion performance of SBS in asphalt as well as the strength of SBS polymer network structures,and the synergistic effects decrease the volatilization degree of asphalt lightweight components and the degradation rate of SBS during the aging process.The anti-aging performance of SBS modified asphalt(SBSMA)was significantly enhanced by SBS pre-swelling/extraction process compounded with the incorporation of C9 petroleum resin,and the anti-aging effect was gradually enhanced with the increase of C9 petroleum resin content.
基金Supported by Huang Ruisong's National Famous Old Traditional Chinese Medicine Expert Inheritance Studio Construction Project[GuoZhongYiYaoRenJiaoHan(2022)75]Hospital Pharmacy Research Project of Guangxi Pharmaceutical Association(GXYXH-202404)+4 种基金2024 Youth Science Fund Project of International Zhuang Medical Hospital(2024GZYJKT005)High-level Traditional Chinese Medicine Key Discipline Construction Project of National Administration of Traditional Chinese Medicine(ZYYZDXK-2023165)National Old Pharmaceutical Workers Inheritance Studio Construction Project of National Administration of Traditional Chinese Medicine[GuoZhongYiYaoRenJiaoHan(2024)255]Talent Cultivation Project-"Young Crop Project"of International Zhuang Medical Hospital Affiliated to Guangxi University of Chinese Medicine(2022001)Guangxi Traditional Chinese Medicine Multidisciplinary Innovation Team Project(GZKJ2309).
文摘[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin content and dry extract yield as evaluation indicators,the main influencing factors and level range of the extraction process of Qingdu Jianpi Mixture were determined on the basis of single factor test method,and the optimal weight coefficient was screened by AHP-entropy method mixed with weighting method.Combined with L_(9)(3^(4))orthogonal experiment,the best extraction process was obtained.At the same time,thin-layer chromatographic identification was used to identify Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal liquid.[Results]The best extraction process:add 1:12 water to the prescription decoction pieces,extract under reflux for 2 times,1.5 h per time,and combine the filtrate to 250 mL.Thin layer chromatography analysis showed that the spots of Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal solution were the same as those of reference substances at the corresponding positions,and the negative control had no interference.[Conclusions]The experimental method is reasonable and feasible,and the process is reliable,which can provide experimental reference for the subsequent application of in-hospital preparations and research and development of Qingdu Jianpi Mixture.
基金supported by the National Key Research and Development Program of China(2022YFB3504501)the National Natural Science Foundation of China(52274355)。
文摘This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.
基金supported by the Heilongjiang Provincial Administration of Traditional Chinese Medicine Project(ZHY18-153).
文摘Objective To optimize the ultrasonic extraction process for benzoic acid as a harmful substance in Paeonia lactiflora Pall.(P.lactiflora Pall.).Methods Methanol and ethanol solutions at different concentration gradients(25,50,75%)were prepared to investigate the effects of extraction solvents on the extraction efficiency of benzoic acid.The influences of ultrasonic frequency(35,50 Hz),ultrasonic power(40,60,80,100 W),ultrasonic time(10,20,30,40,50,60 minutes),and ultrasonic temperature(20,30,40,50℃)on the extraction efficiency were examined.Orthogonal experiments were conducted to analyze the effects of temperature,time,and ultrasonic power on the extraction efficiency and to screen the optimal ultrasonic extraction process.Results Various influencing factors had certain effects on the extraction efficiency of benzoic acid from P.lactiflora Pall.Single-factor analysis revealed that 25%methanol,ultrasonic frequency of 50 Hz,ultrasonic power of 40 W,ultrasonic time of 10minutes,and ultrasonic temperature of 30℃yielded the highest extraction efficiency for benzoic acid.The order of influence of different factors on the extraction efficiency was temperature>time>power.The optimal conditions obtained from orthogonal experiments were:extraction solvent of 25%methanol,ultrasonic frequency of 50 Hz,ultrasonic time of 20 minutes,ultrasonic power of 40 W,and ultrasonic temperature of 30℃.Conclusion Under the conditions of 25%methanol as the extraction solvent,ultrasonic frequency of 50 Hz,ultrasonic time of 20 minutes,ultrasonic power of 40 W,and ultrasonic temperature of 30℃,the extraction efficiency of benzoic acid from P.lactiflora Pall.was the highest.This method offers advantages such as simple operation,small sample size requirement,and low solvent consumption,providing a reliable analytical approach for quality control and safety evaluation of P.lactiflora Pall.
基金Supported by Project of Guangxi Zhuang Autonomous Region Administration of Traditional Chinese Medicine(GXZYA20230001)Research Fund Project of Guangxi Zhuang Autonomous Region Medicinal Botanical Garden(202304).
文摘This paper systematically categorizes the primary composition of star anise(Illicium verum),including volatile oils,flavonoids,phenolic acids,and sesquiterpene lactones,and further analyzes the pharmacological activities,such as antibacterial,analgesic,anti-inflammatory,and antioxidant effects.Additionally,it summarizes key aspects of extraction techniques,analytical methods,and fresh material processing technologies.The objective is to provide a robust foundation for enhancing research methods and technological standards related to star anise,thereby improving resource utilization efficiency and facilitating its industrial applications.
文摘[Objectives]To investigate the optimal extraction conditions for anthocyanins from defatted Lycium ruthenicum Murray using ultrasonic-assisted solvent extraction.[Methods]Anthocyanins were extracted from wild L.ruthenicum in Qinghai Province using ultrasonic-assisted ethanol extraction.Through single-factor and orthogonal experiments,the optimal extraction conditions were determined as follows:temperature 50℃,solid-liquid ratio 1:15(g/mL),ethanol concentration 60%(v/v),and ultrasonic extraction time 25 min.Under these conditions,the anthocyanin content of L.ruthenicum was quantified by UV-Vis spectrophotometry at 280 nm.[Results]The extraction yield of anthocyanins from wild Qinghai L.ruthenicum was 17.0 mg/g,which is superior to the yield of 10.0 mg/g obtained by water solvent extraction,representing a 0.7%increase in extraction rate.The anthocyanin content in L.ruthenicum from different regions was determined,revealing that samples from the Chaidamu area in Qinghai had the highest content(17.3 mg/g),while samples from the Gansu area had the lowest(12.0 mg/g).[Conclusions]Ultrasonic-assisted ethanol extraction technology offers advantages including rapid operation,low energy consumption,high extraction yield,simple detection,and safety.
基金supported by theUniversitasNegeri Semarang throughDPAUNNES 2024The grant number is No.271.26.2/UN37/PPK.10/2024.
文摘Bio-oil is a renewable fuel that can be obtained from biomass waste,such as empty palm fruit bunches,sugarcane bagasse,and rice husks.Within a biorefinery framework,bio-oil had not met the standards as a fuel due to the presence of impurities like corrosive phenol.Therefore,the separation of phenol from bio-oil is essential and can be achieved using the extraction method.In this study,biomass wastes(empty fruit bunches of oil palm,sugarcane bagasse,and rice husk)were pyrolyzed in a biorefinery framework to produce bio-oil,which was then refined through liquid-liquid extraction with a methanol-chloroform and ethyl acetate solvents to remove its phenolic compound.The extraction with methanol-chloroform solvent was carried out for 1 h at 50℃.Meanwhile,extraction with ethyl acetate solvent was carried out for 3 h at 70℃.Both extractions used the same variations,i.e.,bio-oil:solvent ratio at 1:1,1:2,1:3,and 1:4,and stirring speeds of 150 rpm,200 rpm,250 rpm,and 300 rpm.The bio-oil obtained from this study contained complex chemical compounds and had characteristics such as a pH of 5,a density of 1.116 g/mL,and a viscosity of 29.57 cSt.Theoptimization results using response surface methodology(RSM)showed that the best yield formethanolchloroform was 72.98%at a stirring speed of 250 rpm and a ratio of 1:3.As for ethyl acetate solvent,the highest yield obtained was 71.78%at a stirring speed of 237.145 rpm and a ratio of 1:2.
基金the Key Research and Development Plan of Shandong Province (Major Scientific and Technological Innovation Project) (2021ZDSYS24)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai) (AMGM2023A09)the Open Project Program of Fujian Universities Engineering Research Center of Reactive Distillation Technology (RDRC202204), Fuzhou University。
文摘Innovating distillation technology to improve the efficiency of distillation equipment,reduce energy consumption,and increase product purity is an important challenge for the rapid development of the distillation industry.In this paper,steady-state simulations are developed for the separated isopropanol and water systems,and the sensitive temperature stage locations are determined using sensitivity and singular value decomposition(SVD).An open-loop steady-state gain analysis of the isopropanol/water system was performed,and a series of dynamic control schemes were designed and optimized to resist±10% feed flow disturbances and ±5% feed composition disturbances,comparing the performance of the control schemes one by one through IAE error analysis.The results show that the side-stream extractive distillation separation of isopropanol and water system using a single temperature fixed reflux ratio control loop suffers from a large product shift problem.One of the key control loops is to control the isopropanol purity by controlling the bottom of the column flow rate,and the scheme performs well under both single-temperature control and dual-temperature control,effectively resisting ±10% feed flow disturbances and ±5% feed composition disturbances.The improvement of product purity can be seen from the compone nt controllers play an important role,while the feed-fo rward effect under certain conditions can also enable the system to quickly restore stability and improve the system response speed.
文摘Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.
基金sponsored by the US Department of Energy Fossil Energy and Carbon Management Program,project FEAA157 under contract DE-AC05-00OR22725 with UTBattelle,LLC.
文摘Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis was performed for a coal-to-carbonfiber manufacture process developed at the University of Kentucky’s Center for Applied Energy Research.According to this process,coal,with decant oil as the solvent,was converted to mesophase pitch via solvent extraction,and the mesophase pitch was subsequently converted to carbon fiber.The total cost to produce carbon fibers from coal and decant oil via the solvent extraction process was estimated to be$11.50/kg for 50,000-tow pitch carbon fiber with a production volume of 3750 MT/year.The estimated carbon fiber cost was significantly lower than the current commercially available PAN-based carbon fiber price($20–$30/kg).With decant oil recycling rates of 50%and 70%in the solvent extraction process,the manufacturing cost of carbon fiber was estimated to be$9.90/kg and$9.50/kg of carbon fiber,respectively.A cradle-to-gate energy assessment revealed that carbon fiber derived from coal exhibited an embodied energy of 510 MJ/kg,significantly lower than that of conventionally produced carbon fiber from PAN.This notable difference is primarily attributed to the substantially higher conversion rate of coal-based mesophase pitch fibers into carbon fiber,surpassing PAN fibers by 1.6 times.These findings indicate that using coal for carbon fiber production through solvent extraction methods could offer a more energy-efficient and cost-competitive alternative to the traditional PAN based approach.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金This research was jointly supported by the China Geological Survey Project(DD20211404)the Natural Science Foundation of Inner Mongolia Autonomous Region(2019LH05028).
文摘With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction.
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
文摘Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金Funded by the National Natural Science Foundation of China(No.52278446)。
文摘To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.
文摘AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longitudinal observational study,detailed medical histories of APAC patients and comprehensive ophthalmic examinations at final followup were collected.Logistic regression analysis was performed to identify predictors of blindness.Univariate and multivariate linear regression analyses were conducted to determine risk factors associated with visual outcomes.RESULTS:This study included 39 affected eyes of 31 subjects(26 females)with an average age of 74.1±8.0y.At 6.7±4.2y after APAC attack,2(5.7%)eyes had bestcorrected visual acuity(VA)worse than 3/60.Advanced glaucomatous visual field loss was observed in 15(39.5%)affected eyes and 5(25.0%)fellow eyes.Nine affected eyes(23.7%)had GON,and 11(28.9%)were blind.Six(15.4%)affected eyes and 2(9.1%)fellow eyes had suspicious progression.A significantly higher blindness rate in factory workers compared to office workers.Logistic regression identified that worse VA at attack(OR 10.568,95%CI 1.288-86.695;P=0.028)and worse early postoperative VA(OR 13.214,95%CI 1.157-150.881;P=0.038)were risk factors for blindness.Multivariate regression showed that longer duration of elevated intraocular pressure(P=0.004)and worse early postoperative VA(P=0.009)were associated with worse visual outcomes.CONCLUSION:Despite LE surgery,some APAC patients experience continued visual function deterioration.Lifelong monitoring is necessary.Target pressure and progression rates should be re-evaluated during follow-up.
基金supported by National Natural Science Foundation of China(Grant No.52171032)Hebei Natural Science Foundation(Grant No.E2023501002)Fundamental Research Funds for the Central Universities(Grant No.2024GFYD003)。
文摘High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as notable solid-state welding and processing techniques,have been proved effectiveness in enhancing microstructures and mechanical properties of HEAs.This review article summarizes the current status of FSW/P of HEAs.The welding materials and conditions used for FSW/P in HEAs are reviewed and discussed.The effects of FSW/P on the evolutions of grain structure,texture,dislocation,and secondary phase for different HEAs are highlighted.Furthermore,the influences of FSW/P on the mechanical properties of various HEAs are analyzed.Finally,potential applications,challenges,and future directions of FSW/P in HEAs are forecasted.Overall,FSW/P enable to refine grains of HEAs through dynamic recrystallization and to activate diverse deformation mechanisms of HEAs through tailoring phase structures,thereby significantly improving the strength,hardness,and ductility of both single-and dual-phase HEAs.Future progress in this field will rely on comprehensive optimization of processing parameters and alloy composition,integration of multi-scale modeling with advanced characterization for in-depth exploration of microstructural mechanisms,systematic evaluation of functional properties,and effective bridging of the gap between laboratory research and industrial application.The review aims to provide an overview of recent advancements in the FSW/P of HEAs and encourage further research in this area.