期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
RegVar:Tissue-specific Prioritization of Non-coding Regulatory Variants
1
作者 Hao Lu Luyu Ma +4 位作者 Cheng Quan Lei Li Yiming Lu Gangqiao Zhou Chenggang Zhang 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2023年第2期385-395,共11页
Non-coding genomic variants constitute the majority of trait-associated genome variations;however,the identification of functional non-coding variants is still a challenge in human genetics,and a method for systematic... Non-coding genomic variants constitute the majority of trait-associated genome variations;however,the identification of functional non-coding variants is still a challenge in human genetics,and a method for systematically assessing the impact of regulatory variants on gene expression and linking these regulatory variants to potential target genes is still lacking.Here,we introduce a deep neural network(DNN)-based computational framework,RegVar,which can accurately predict the tissue-specific impact of non-coding regulatory variants on target genes.We show that by robustly learning the genomic characteristics of massive variant-gene expression associations in a variety of human tissues,RegVar vastly surpasses all current non-coding variant prioritization methods in predicting regulatory variants under different circumstances.The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. 展开更多
关键词 Non-coding variant Variantprioritization expressionregulation Expressionquantitative trait locus Deep neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部