Intracerebral hemorrhage(ICH)is a common severe emergency in neurosurgery,causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically,especially...Intracerebral hemorrhage(ICH)is a common severe emergency in neurosurgery,causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically,especially among patients with poor functional outcomes.ICH is often accompanied by decreased consciousness and limb dysfunction.This seriously affects patients’ability to live independently.Although rapid advances in neurosurgery have greatly improved patient survival,there remains insufficient evidence that surgical treatment significantly improves long-term outcomes.With in-depth pathophysiological studies after ICH,increasing evidence has shown that secondary injury after ICH is related to long-term prognosis and that the key to secondary injury is various immune-mediated neuroinflammatory reactions after ICH.In basic and clinical studies of various systemic inflammatory diseases,triggering receptor expressed on myeloid cells 1/2(TREM-1/2),and the TREM receptor family is closely related to the inflammatory response.Various inflammatory diseases can be upregulated and downregulated through receptor intervention.How the TREM receptor functions after ICH,the types of results from intervention,and whether the outcomes can improve secondary brain injury and the long-term prognosis of patients are unknown.An analysis of relevant research results from basic and clinical trials revealed that the inhibition of TREM-1 and the activation of TREM-2 can alleviate the neuroinflammatory immune response,significantly improve the long-term prognosis of neurological function in patients with cerebral hemorrhage,and thus improve the ability of patients to live independently.展开更多
OBJECTIVES:To investigate the effect of Bushen Tongluo recipe(BSTLR, 补肾通络方) on rats with diabetic kidney disease(DKD) and to explore the underlying mechanism of action. METHODS:The rat model of DKD was establishe...OBJECTIVES:To investigate the effect of Bushen Tongluo recipe(BSTLR, 补肾通络方) on rats with diabetic kidney disease(DKD) and to explore the underlying mechanism of action. METHODS:The rat model of DKD was established, and rats were treated with different doses of BSTLR. Body weight and the levels of urinary protein, α1-microglobulin, glucose, blood urea nitrogen, creatinine, Cystatin C, superoxide dismutase, malondialdehyde, and catalase were analyzed biochemically or by enzyme-linked immunosorbent assay. The pathological damage to renal tissues was assessed by hematoxylin-eosin staining. Immunohistochemical staining was carried out to detect the expression levels of fibronectin, E-cadherin, α-smooth muscle actin, laminin, vimentin, collagen type Ⅳ in kidney tissues. Western blot analysis was conducted to analyze the expression levels of Nephrin, Desmin, Podocin, transforming growth factor-β1, mothers against decapentaplegic homolog 3(Smad3), Notch1, jagged, hairy and enhancer of split 1(Hes1) in kidney tissues, and the expression levels of maternally expressed gene 3(MEG3) and mi R-145 were measured by quantitative reverse transcription-polymerase chain reaction. Moreover, dual-luciferase reporter assay was employed to verify the binding of mi R-145 to MEG3. RESULTS:BSTLR increased the body weight of DKD rats, effectively ameliorated the renal function and pathological injury in DKD, regulated the balance of renal oxidative stress, inhibited the TGF/Notch signaling pathway, and affected the variations in the lnc RNA MEG3/mi R-145 axis. CONCLUSION:BSTLR improved oxidative stress homeostasis, inhibited the TGF/Notch signaling pathway, and regulated the lnc RNA MEG3/mi R-145 axis, effectively delaying the progression of DKD.展开更多
Non-alcoholic fatty liver disease(NAFLD)is a progressive disease.Without effective interventions,NAFLD can gradually develop to non-alcoholic steatohepatitis,fatty liver fibrosis,liver cirrhosis and even hepatocellula...Non-alcoholic fatty liver disease(NAFLD)is a progressive disease.Without effective interventions,NAFLD can gradually develop to non-alcoholic steatohepatitis,fatty liver fibrosis,liver cirrhosis and even hepatocellular carcinoma.It is still to investigate the precise molecular mechanism behind the pathophysiology of NAFLD.Triggering receptor expressed on myeloid cells 2(TREM2)can sense tissue injury and mediate immune remodeling,thereby inducing phagocytosis,lipid metabolism,and metabolic transfer,promoting cell survival and combating inflammatory activation.NAFLD might develop as a result of TREM2's regulatory role.We here briefly summarize the biological characteristics of TREM2 and its functions in the disease progression of NAFLD.Moreover,we propose to broaden the therapeutic strategy for NAFLD by targeting TREM2.展开更多
Powdery mildew is a serious disease of wheat in China. As part of ITEC (International Triteace EST cooperation), EST (expressed sequence tags) technique was used to explore the gene expression in leaf induced by Ery...Powdery mildew is a serious disease of wheat in China. As part of ITEC (International Triteace EST cooperation), EST (expressed sequence tags) technique was used to explore the gene expression in leaf induced by Erysiphe graminis DC. A conventional cDNA library was constructed, and a total of 1 500 clones picked randomly from the library were sequenced, three hundred and eighty_seven ESTs of them were unique, which got the Accession Number in GenBank. About 49.4% ESTs showed significant similarity to functions of known sequences in GenBank. There are 196 ESTs' with functions not able to be determined, and eighty_four ESTs were demonstrated to be novel sequences. High_density dot membranes from unique clones were produced, and several disease resistance related genes were screened by differential hybridization.展开更多
MicroRNAs (miRNAs) are endogenous -22 nucleofide-long noncoding RNAs. In this study, to investigate miRNA expression profiles and their functions in mammary gland development, we have used microarray as well as qRT-...MicroRNAs (miRNAs) are endogenous -22 nucleofide-long noncoding RNAs. In this study, to investigate miRNA expression profiles and their functions in mammary gland development, we have used microarray as well as qRT-PCR, to analyze the miRNA expression changes along the murine mammary cycle during pregnancy, particularly on transition from pregnancy to lactation. It shows that every developmental stage of the mammary gland has its own mjRNA expression pattern. Compared with virgin and involution, some miRNAs such as miR-138 and miR-431 are downregulated, whereas, some miRNAs such as miR-133 and miR-133a-133b are upregulated during pregnancy and lactation. These results indicate that miRNAs are functionally involved in mammary gland development.展开更多
Background:Tuberculosis is a leading cause of death worldwide.BCG is an effective vaccine,but not widely used in many parts of the world due to a variety of issues.Mycobacterium vaccae(M.vaccae)is another vaccine used...Background:Tuberculosis is a leading cause of death worldwide.BCG is an effective vaccine,but not widely used in many parts of the world due to a variety of issues.Mycobacterium vaccae(M.vaccae)is another vaccine used in human subjects to prevent tuberculosis.In the current study,we investigated the potential mechanisms of M.vaccae vaccination by determining differentially expressed genes in mice infected with M.tuberculosis before and after M.vaccae vaccination.Methods:Three days after exposure to M.tuberculosis H37 Rv strain(5×10~5 CFU),adult BALB/c mice randomly received either M.vaccae vaccine(22.5μg)or vehicle via intramuscular injection(n=8).Booster immunization was conducted 14 and 28 days after the primary immunization.Differentially expressed genes were identified by microarray followed by standard bioinformatics analysis.Results:M.vaccae vaccination provided protection against M.tuberculosis infection(most prominent in the lungs).We identified 2,326 upregulated and 2,221 downregulated genes in vaccinated mice.These changes could be mapped to a total of 123 signaling pathways(68 upregulated and 55 downregulated).Further analysis pinpointed to the MyD88-dependent TLR signaling pathway and PI3 K-Akt signaling pathway as most likely to be functional.Conclusions:M.vaccae vaccine provided good protection in mice against M.tuberculosis infection,via a highly complex set of molecular changes.Our findings may provide clue to guide development of more effective vaccine against tuberculosis.展开更多
BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncog...BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncogenes and downregulate tumor suppressor genes without changing the sequences.However, studies of methylation in the control of gene expression are still inadequate. In the present research, we performed bioinformatics analysis to clarify the function of methylation and supply candidate methylation-related biomarkers and drivers for colon cancer.AIM To identify and analyze methylation-regulated differentially expressed genes(MeDEGs) in colon cancer by bioinformatics analysis.METHODS We downloaded RNA expression profiles, Illumina Human Methylation 450 K BeadChip data, and clinical data of colon cancer from The Cancer Genome Atlas project. MeDEGs were identified by analyzing the gene expression and methylation levels using the edgeR and limma package in R software. Gene ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed in the DAVID database and KEGG Orthology-Based Annotation System 3.0, respectively. We then conducted Kaplan–Meier survival analysis to explore the relationship between methylation and expression and prognosis. Gene set enrichment analysis(GSEA) and investigation of protein-protein interactions(PPI) were performed to clarify the function of prognosis-related genes.RESULTS A total of 5 up-regulated and 81 down-regulated genes were identified asMeDEGs. GO and KEGG pathway analyses indicated that MeDEGs were enriched in multiple cancer-related terms. Furthermore, Kaplan–Meier survival analysis showed that the prognosis was negatively associated with the methylation status of glial cell-derived neurotrophic factor(GDNF) and reelin(RELN). In PPI networks, GDNF and RELN interact with neural cell adhesion molecule 1. Besides, GDNF can interact with GDNF family receptor alpha(GFRA1), GFRA2, GFRA3, and RET. RELN can interact with RAFAH1 B1,disabled homolog 1, very low-density lipoprotein receptor, lipoprotein receptorrelated protein 8, and NMDA 2 B. Based on GSEA, hypermethylation of GDNF and RELN were both significantly associated with pathways including "RNA degradation," "ribosome," "mismatch repair," "cell cycle" and "base excision repair."CONCLUSION Aberrant DNA methylation plays an important role in colon cancer progression.MeDEGs that are associated with the overall survival of patients may be potential targets in tumor diagnosis and treatment.展开更多
Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese b...Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar(Jimai 20) during grain development using the Gene Chip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis(DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves.Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and Map Man analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by q RT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.展开更多
BACKGROUND Sepsis is a major medical challenge.Magnolol is an active constituent of Houpu that improves tissue function and exerts strong anti-endotoxin and anti-inflammatory effects,but the mechanism by which it redu...BACKGROUND Sepsis is a major medical challenge.Magnolol is an active constituent of Houpu that improves tissue function and exerts strong anti-endotoxin and anti-inflammatory effects,but the mechanism by which it reduces intestinal inflammation in sepsis is yet unclear.AIM To assess the protective effect of magnolol on intestinal mucosal epithelial cells in sepsis and elucidate the underlying mechanisms.METHODS Enzyme-linked immunosorbent assay was used to measure tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),IL-6,and regulated on activation,normal T-cell expressed and secreted(RANTES)levels in serum and ileal tissue in animal studies.The histopathological changes of the ileal mucosa in different groups were observed under a microscope.Cell Counting Kit-8 and cell permeability assays were used to determine the concentration of drug-containing serum that did not affect the activity of Caco2 cells but inhibited lipopolysaccharide(LPS)-induced decrease in permeability.Immunofluorescence and Western blot assays were used to detect the levels of RANTES,inhibitor of nuclear factor kappa-B kinaseβ(IKKβ),phosphorylated IKKβ(p-IKKβ),inhibitor of nuclear factor kappa-B kinaseα(IκBα),p65,and p-p65 proteins in different groups in vitro.RESULTS In rats treated with LPS by intravenous tail injection in the presence or absence of magnolol,magnolol inhibited the expression of proinflammatory cytokines,IL-1β,IL-6,and TNF-αin a dose-dependent manner.In addition,magnolol suppressed the production of RANTES in LPS-stimulated sepsis rats.Moreover,in vitro studies suggested that magnolol inhibited the increase of p65 nucleation,thereby markedly downregulating the production of the phosphorylated form of IKKβin LPS-treated Caco2 cells.Specifically,magnolol inhibited the translocation of the transcription factor nuclear factor-kappa B(NF-κB)from the cytosol into the nucleus and down-regulated the expression level of the chemokine RANTES in LPS-stimulated Caco2 cells.CONCLUSION Magnolol down-regulates RANTES levels by inhibiting the LPS/NF-κB signaling pathways,thereby suppressing IL-1β,IL-6,and TNF-αexpression to alleviate the mucosal barrier dysfunction in sepsis.展开更多
Zostera marina, a monocotyledonous angiosperm, is one of the most important seagrass species. To inves- tigate the salt-tolerance mechanism and discover salt-tolerant genes in Z. marina, a cDNA library was con- struct...Zostera marina, a monocotyledonous angiosperm, is one of the most important seagrass species. To inves- tigate the salt-tolerance mechanism and discover salt-tolerant genes in Z. marina, a cDNA library was con- structed. Single-pass sequencing of the 5' ends of 4 081 clones yielded 4 002 high quality expressed sequence tags (ESTs), which were assembled into 241 contigs and 1 673 singletons, representing 1 914 unigenes. The average length of the ESTs was 582 bp, with sizes ranging from 100-1 500 bp. Basic Local Alignment Search Tool (BLASTX) analysis revealed that 1 664 unigenes had significant homology to known genes in the Na- tional Center for Biotechnology Information (NCBI) non-redundant (nr) database (E-value≤5-10). Among them, the two most abundant genes encoded metallothionein (157 ESTs) and chlorophyll a/b-binding pro- tein (38 ESTs), accounting for 7.1% and 1.7% of the total ESTs, respectively. Using Kyoto Encyclopedia of Genes and Genomes (KEGG), 1 462 unigenes were assigned to 1 161 pathways (E-value≤5-10). A total of 938 unigenes were assigned Gene Ontology (GO) terms based on the GO hierarchy analysis, and InterProScan searches recognized 1 003 InterPro families. Three genes for metallothionein in Z. marina that belonged to Class II was identified. Results of this study will improve understanding of the molecular mechanisms of saline tolerance in Z. marina.展开更多
Blooming date is an important trait in fruit tree species.Although several quantitative trait loci confirming blooming date were identified in Prunus spp.,the molecular mechanism underlying it remains unclear.Arising ...Blooming date is an important trait in fruit tree species.Although several quantitative trait loci confirming blooming date were identified in Prunus spp.,the molecular mechanism underlying it remains unclear.Arising from this,the transcriptomes of normal blooming and lateblooming Siberian apricot(P.sibirica L.)flower buds were analyzed using RNA-seq technology.A total of 68,855 unigenes were de novo assembled,among which 1204 were differentially expressed between normal and late blooming.Gene ontology enrichment analysis revealed that biological processes were enriched with metabolic processes.The catalytic-related gene transcripts between the two types of blooming were significantly changed in the molecular function.Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 156 genes were successfully annotated and 75 pathways enriched.Genes for gibberellin biosynthesis were up-regulated in normal blooming,whereas abscisic acid degradation-related genes were also up-regulated in normal blooming.Moreover,circadian rhythms related genes including EARLY FLOWERING 4,LATE ELONGATED HYPOCOTYL and CIRCANDIAN CLOCK ASSOCIATED1 were all up-regulated in normal blooming,indicating that circadian rhythms have a very important role in controlling blooming date.Furthermore,zinc finger protein CONSTANS-LIKE 12 was blasted onto the quantitative trait loci region on linkage group 4 in peach.However,changes in the abundance of key flowering genes such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1,FLOWERING LOCU T,LEAFY and FLOWERING LOCUS C were not significantly different,indicating that further investigation should explore the function of these genes on blooming date.The outcomes of this study will provide a valuable platform for further research on the molecular mechanism of blooming date in Prunus.展开更多
In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera (Ulva prolifera O. F. Miiller), a familiar green...In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera (Ulva prolifera O. F. Miiller), a familiar green macroalga along the coastline of China. Rapid accumulation of a large biomass of floating U. prolifera prompted research on different aspects of this species. In this study, we constructed a nonnormalized cDNA library from the thalli of U. prolifera and acquired 10072 high-quality expressed sequence tags (ESTs). These ESTs were assembled into 3 519 nonredundant gene groups, including 1 446 clusters and 2 073 singletons. After annotation with the nr database, a large number of genes were found to be related with chloroplast and ribosomal protein, GO functional classification showed 1 418 ESTs participated in photosynthesis and 1 359 ESTs were responsible for the generation of precursor metabolites and energy. In addition, rather comprehensive carbon fixation pathways were found in U. prolifera using KEGG. Some stress-related and signal transduction-related genes were also found in this study. All the evidences displayed that U. prolifera had substance and energy foundation for the intense photosynthesis and the rapid proliferation. Phylogenetic analysis of cytochrome c oxidase subunit I revealed that this green-tide causative species is most closely affiliated to Pseudendoclonium akinetum (Ulvophyceae).展开更多
Gene spectrum analysis has shown that gene expression and signaling pathways change dramatically after spinal cord injury,which may affect the microenvironment of the damaged site.Microarray analysis provides a new op...Gene spectrum analysis has shown that gene expression and signaling pathways change dramatically after spinal cord injury,which may affect the microenvironment of the damaged site.Microarray analysis provides a new opportunity for investigating diagnosis,treatment,and prognosis of spinal cord injury.However,differentially expressed genes are not consistent among studies,and many key genes and signaling pathways have not yet been accurately studied.GSE5296 was retrieved from the Gene Expression Omnibus DataSet.Differentially expressed genes were obtained using R/Bioconductor software(expression changed at least two-fold;P < 0.05).Database for Annotation,Visualization and Integrated Discovery was used for functional annotation of differentially expressed genes and Animal Transcription Factor Database for predicting potential transcription factors.The resulting transcription regulatory protein interaction network was mapped to screen representative genes and investigate their diagnostic and therapeutic value for disease.In total,this study identified 109 genes that were upregulated and 30 that were downregulated at 0.5,4,and 24 hours,and 3,7,and 28 days after spinal cord injury.The number of downregulated genes was smaller than the number of upregulated genes at each time point.Database for Annotation,Visualization and Integrated Discovery analysis found that many inflammation-related pathways were upregulated in injured spinal cord.Additionally,expression levels of these inflammation-related genes were maintained for at least 28 days.Moreover,399 regulation modes and 77 nodes were shown in the protein-protein interaction network of upregulated differentially expressed genes.Among the 10 upregulated differentially expressed genes with the highest degrees of distribution,six genes were transcription factors.Among these transcription factors,ATF3 showed the greatest change.ATF3 was upregulated within 30 minutes,and its expression levels remained high at28 days after spinal cord injury.These key genes screened by bioinformatics tools can be used as biological markers to diagnose diseases and provide a reference for identifying therapeutic targets.展开更多
The mouse model of oxygen induced retinopathy is suitable for the study of various retinal neovascularization diseases,including retinopathy of prematurity.The maternally expressed gene 3(MEG3)has been demonstrated to...The mouse model of oxygen induced retinopathy is suitable for the study of various retinal neovascularization diseases,including retinopathy of prematurity.The maternally expressed gene 3(MEG3)has been demonstrated to have an inhibitory effect on diabetic retinopathy.In this study,we investigated the role of MEG3 overexpression in oxygen-induced retinopathy in mice.The results showed that MEG3 overexpression effectively inhibited the production of retinal neovascularization in oxygen-induced retinopathy mice.It acts by down-regulating the expression of phosphoinositide 3-kinase,serine/threonine kinase,and vascular endothelial growth factor and pro-inflammatory factors.MEG3 overexpression lentivirus has a future as a new method for the clinical treatment of retinopathy of prematurity.The animal experiments were approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University,China(approval No.2016PS074K)on February 25,2016.展开更多
Objective: To construct recombinant retroviral vector containing HIV-1 Tatgene and evaluate the junction of the expressed Tat in target cells. Methods: HIV-1 Tat_(101) genewas recovered from pEV plasmid by Hind Ⅲ dig...Objective: To construct recombinant retroviral vector containing HIV-1 Tatgene and evaluate the junction of the expressed Tat in target cells. Methods: HIV-1 Tat_(101) genewas recovered from pEV plasmid by Hind Ⅲ digestion and cloned into expression plasmid LZESpBMN-Z toconstruct recombinant retroviral expression plasmid named LZRS-Tat_(101). Using the method ofcalcium phosphate, the construct of LZRS-Tat_(101) was then transfected into packaging cell linesPhoenix (ΦNX) which contained env and gal genes encoding structural proteins and pol gene codingfor 3 enzymes ( reverse transcriptase, protease and integrate) essential for retroviral integrationand replication . The stable transfected cell lines was obtained using puromycin to screen for morethan 3 days. Then, immunohistochemical (IHC ) staining was carried out to detect the expressionlevel of Tat_(101) protein in both transiently and stably trancfected ΦNX, respectively. Thesupematants containing recombinant virus collected from transient and stable transfected cells wereemployed to infect 293 cells, respectively, and the expressed Tat in 293 cells was tested by Westernblot. Meantime, the supematants of infected 293 cells was further added to HL3T1 cells which wereHela cell lines containing an HIV-1-LTR/CAT reporter construct to establish a co-culture system.After co-culture for 72 hours, the protein was extracted from HL3T1 cells and used for CAT activityassay. Results: After LZRS- Tat_(101) was transfected into ΦNX, the amount of expressed Tat intransient transfection cells was significantly higher than that in stable transfection cells; Tatcould be detected not only in 293 cells but also in the supematants from 293 cells culture, and Tatin the supematants could activate HIV-1 LTR promoter in HL3T1, resulting in high 'expression of CATlocated at the downstream of LTR. Conclusion: The construct of recombinant retrovirus LZRS-Tat_(101) could express Tat protein in target cells and the expressed Tat was functionally activeand can really exhibit the ability to activate transcription.展开更多
OBJECTIVE: To investigate the role of tongue coating fluid protein in regulation of congestive heart failure(CHF) in Qi-deficiency-blood-stasis syndrome.METHODS: We studied patients with CHF(3 patients with Qi-deficie...OBJECTIVE: To investigate the role of tongue coating fluid protein in regulation of congestive heart failure(CHF) in Qi-deficiency-blood-stasis syndrome.METHODS: We studied patients with CHF(3 patients with Qi-deficiency-blood-stasis syndrome and 3 without Qi-deficiency-blood-stasis syndrome) to investigate differentially expressed proteins. We also included a control group. A biotin label-based antibody array was used for testing tongue coating fluid samples from patients. Net-work analysis of these differentially expressed proteins was conducted using the STRING database,which can predict the relations between differentially expressed proteins and CHF with Qi-deficiency-blood-stasis syndrome.RESULTS: A total of seven differentially expressed proteins were identified, and among these, transforming growth factor β1(TGF-β1) gets a particular attention for us has drawn specific attention.Network analysis showed a homologous relationship of TGF-β1 with bone morphogenetic protein15, which is associated with myocardial fibrosis.CONCLUSION: Occurrence and development of CHF may result from certain DE-proteins and associated signaling pathways. TGF-β1 protein may be a candidate marker for assessing the risk of CHF in Qideficiency-blood-stasis syndrome.展开更多
Porcine skeletal muscle genes play a major role in determining muscle growth and meat quality. Construction of a full-length cDNA library is an effective way to understand the expression of functional genes in muscle ...Porcine skeletal muscle genes play a major role in determining muscle growth and meat quality. Construction of a full-length cDNA library is an effective way to understand the expression of functional genes in muscle tissues. In addition, novel genes for further research could be identified in the library. In this study, we constructed a full-length cDNA library from porcine muscle tissue. The estimated average size of the cDNA inserts was 1 076 bp, and the cDNA fullness ratio was 86.2%. A total of 1 058 unique sequences with 342 contigs (32.3%) and 716 singleton (67.7%) expressed sequence tags (EST) were obtained by clustering and assembling. Meanwhile, 826 (78.1%) ESTs were categorized as known genes, and 232 (21.9%) ESTs were categorized as unknown genes. 65 novel porcine genes that exhibit no identity in the TIGR gene index of Sus scrofa and 124 full-length sequences with unknown functions were deposited in the dbEST division of GenBank (accession numbers: EU650784-EU650788, GE843306, GH228978-GH229100). The abundantly expressed genes in porcine muscle tissue were related to muscle fiber development, energy metabolism and protein synthesis. Gene ontology analysis showed that sequences expressed in porcine muscle tissue contained a high percentage of binding activity, catalytic activity, structural molecule activity and motor activity, which involved mainly in metabolic, cellular and developmental process, distributed mainly in intracellular region. The sequence data generated in this study would provide valuable information for identifying porcine genes expressed in muscle tissue and help to advance the study on the structure and function of genes in pigs.展开更多
Blood clam, Tegillarca granosa, is an important shellfish in Chinese mariculture industry. Investigative research in this species, such as genetic linkage mapping, requires a large panel of molecular markers. In prese...Blood clam, Tegillarca granosa, is an important shellfish in Chinese mariculture industry. Investigative research in this species, such as genetic linkage mapping, requires a large panel of molecular markers. In present study, a total of 89 polymorphic microsatellite markers were developed in T. granosa using the sequence database of Life Sciences Technology 454 next generation sequencing technology. All 89 loci were characterized in 20 individual clams from a natural population inhabiting Yueqing Gulf, Zhejiang Province, China. The number of alleles per polymorphic locus varied between 2 and 15, while the observed heterozygosity, expected heterozygosity and polymorphic information content varied between 0.000 and 1.000, 0.102 and 0.921, and 0.048 and 0.886, respectively. Of the 89 loci identified, 32 loci deviated significantly from Hardy-Weinberg equilibrium following Bonferroni correction. Thirty nine markers, which were shown to be polymorphic in a full-sibling family, were tested in Mendelian segregations. As expected, 32 loci were co-dominantly segregated in a Mendelian fashion. These novel developed microsatellite markers represent useful research tools for investigation of population genetic structure and genetic diversity in this species.展开更多
One of the impediments in the genetic improvement of cotton fiber is the paucity of information about genes associated with fiber development.Availability of chromosome arm substitution line CS-
In our previous study, we identified a novel testis-specific expressed gene 2 (TSEG-2) from mouse testis. To further investigate its functions, 35 male Balb/c mice (8 weeks old) were divided into cryptorchidism gr...In our previous study, we identified a novel testis-specific expressed gene 2 (TSEG-2) from mouse testis. To further investigate its functions, 35 male Balb/c mice (8 weeks old) were divided into cryptorchidism group (n=20), sham group (n=10), and control group (n=5). In cryptorchidism group, the right testes were anchored to the inner lateral abdominal wall. In situ hybridization (ISH) was applied to measure the localization of TSEG-2 in mouse testis. Real-time quantitative PCR was performed to detect the expression of TSEG-2 gene. Meanwhile, under the mediation of polyethylenimine (PEI), the recombinant vector pEGFP-TSEG-2 (n=5) or empty vector (mock, n=5) was transfected into the testis of male mice. The transfection efficiencies were measured under a fluorescence microscope. The apoptosis of spermatogenic cells was detected by terminal deoxynuleotidyl-mediated nick end labeling (TUNEL). The results showed that TSEG-2 was expressed in convoluted seminiferous tubules, more precisely, in spermatogonia and spermatocytes. As compared with sham and control groups, the TSEG-2 transcription was significantly enhanced (P〈0.05) and was correlated with apoptosis of spermatogenic cells in cryptorchid testes (P〈0.05). PEI was efficient in mediating transfeetion of TSEG-2 into seminiferous tubules of testis. One week post-transfection, intratesticular injection of TSEG-2 resulted in increased apoptosis of spermatogenic cells in vivo (P〈0.05). These results indicate that TSEG-2 may participate in the apoptosis of spermatogenic cells and the pathogenesis of cryptorchidism.展开更多
基金Supported by Shanxi Provincial Key Research and Development Plan Project,No.2020ZDLSF01-02Doctor Foundation of the Second Affiliated Hospital of Xi’an Medical University,No.X2Y-R11.
文摘Intracerebral hemorrhage(ICH)is a common severe emergency in neurosurgery,causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically,especially among patients with poor functional outcomes.ICH is often accompanied by decreased consciousness and limb dysfunction.This seriously affects patients’ability to live independently.Although rapid advances in neurosurgery have greatly improved patient survival,there remains insufficient evidence that surgical treatment significantly improves long-term outcomes.With in-depth pathophysiological studies after ICH,increasing evidence has shown that secondary injury after ICH is related to long-term prognosis and that the key to secondary injury is various immune-mediated neuroinflammatory reactions after ICH.In basic and clinical studies of various systemic inflammatory diseases,triggering receptor expressed on myeloid cells 1/2(TREM-1/2),and the TREM receptor family is closely related to the inflammatory response.Various inflammatory diseases can be upregulated and downregulated through receptor intervention.How the TREM receptor functions after ICH,the types of results from intervention,and whether the outcomes can improve secondary brain injury and the long-term prognosis of patients are unknown.An analysis of relevant research results from basic and clinical trials revealed that the inhibition of TREM-1 and the activation of TREM-2 can alleviate the neuroinflammatory immune response,significantly improve the long-term prognosis of neurological function in patients with cerebral hemorrhage,and thus improve the ability of patients to live independently.
文摘OBJECTIVES:To investigate the effect of Bushen Tongluo recipe(BSTLR, 补肾通络方) on rats with diabetic kidney disease(DKD) and to explore the underlying mechanism of action. METHODS:The rat model of DKD was established, and rats were treated with different doses of BSTLR. Body weight and the levels of urinary protein, α1-microglobulin, glucose, blood urea nitrogen, creatinine, Cystatin C, superoxide dismutase, malondialdehyde, and catalase were analyzed biochemically or by enzyme-linked immunosorbent assay. The pathological damage to renal tissues was assessed by hematoxylin-eosin staining. Immunohistochemical staining was carried out to detect the expression levels of fibronectin, E-cadherin, α-smooth muscle actin, laminin, vimentin, collagen type Ⅳ in kidney tissues. Western blot analysis was conducted to analyze the expression levels of Nephrin, Desmin, Podocin, transforming growth factor-β1, mothers against decapentaplegic homolog 3(Smad3), Notch1, jagged, hairy and enhancer of split 1(Hes1) in kidney tissues, and the expression levels of maternally expressed gene 3(MEG3) and mi R-145 were measured by quantitative reverse transcription-polymerase chain reaction. Moreover, dual-luciferase reporter assay was employed to verify the binding of mi R-145 to MEG3. RESULTS:BSTLR increased the body weight of DKD rats, effectively ameliorated the renal function and pathological injury in DKD, regulated the balance of renal oxidative stress, inhibited the TGF/Notch signaling pathway, and affected the variations in the lnc RNA MEG3/mi R-145 axis. CONCLUSION:BSTLR improved oxidative stress homeostasis, inhibited the TGF/Notch signaling pathway, and regulated the lnc RNA MEG3/mi R-145 axis, effectively delaying the progression of DKD.
基金Supported by Henan Province's"Double First-Class"Creation of Scientific Research in Traditional Chinese Medicine,No.HSRPDFCTCM-2023-7-23 and No.STG-ZYX02-202117National Traditional Chinese Medicine Clinical Research Base Scientific Research Special Project,No.2022JDZX098 and No.2022JDZX114+1 种基金National Natural Science Foundation of China,No.82205086The 9th China Association for Science and Technology Young Talent Support Project,No.2023QNRC001.
文摘Non-alcoholic fatty liver disease(NAFLD)is a progressive disease.Without effective interventions,NAFLD can gradually develop to non-alcoholic steatohepatitis,fatty liver fibrosis,liver cirrhosis and even hepatocellular carcinoma.It is still to investigate the precise molecular mechanism behind the pathophysiology of NAFLD.Triggering receptor expressed on myeloid cells 2(TREM2)can sense tissue injury and mediate immune remodeling,thereby inducing phagocytosis,lipid metabolism,and metabolic transfer,promoting cell survival and combating inflammatory activation.NAFLD might develop as a result of TREM2's regulatory role.We here briefly summarize the biological characteristics of TREM2 and its functions in the disease progression of NAFLD.Moreover,we propose to broaden the therapeutic strategy for NAFLD by targeting TREM2.
文摘Powdery mildew is a serious disease of wheat in China. As part of ITEC (International Triteace EST cooperation), EST (expressed sequence tags) technique was used to explore the gene expression in leaf induced by Erysiphe graminis DC. A conventional cDNA library was constructed, and a total of 1 500 clones picked randomly from the library were sequenced, three hundred and eighty_seven ESTs of them were unique, which got the Accession Number in GenBank. About 49.4% ESTs showed significant similarity to functions of known sequences in GenBank. There are 196 ESTs' with functions not able to be determined, and eighty_four ESTs were demonstrated to be novel sequences. High_density dot membranes from unique clones were produced, and several disease resistance related genes were screened by differential hybridization.
基金This work was supported by the Doctor Study Project of Heilongjiang Education in 2005.
文摘MicroRNAs (miRNAs) are endogenous -22 nucleofide-long noncoding RNAs. In this study, to investigate miRNA expression profiles and their functions in mammary gland development, we have used microarray as well as qRT-PCR, to analyze the miRNA expression changes along the murine mammary cycle during pregnancy, particularly on transition from pregnancy to lactation. It shows that every developmental stage of the mammary gland has its own mjRNA expression pattern. Compared with virgin and involution, some miRNAs such as miR-138 and miR-431 are downregulated, whereas, some miRNAs such as miR-133 and miR-133a-133b are upregulated during pregnancy and lactation. These results indicate that miRNAs are functionally involved in mammary gland development.
基金supported by Grants from the National Natural Science Foundation of China(81801643)the National Key Program for Infectious Disease of China(2018ZX10731301–005)+1 种基金Beijing Municipal Science&Technology Commission(Z181100001718005)the Medical Science and Technology Youth Cultivation Program of PLA(16QNP075)。
文摘Background:Tuberculosis is a leading cause of death worldwide.BCG is an effective vaccine,but not widely used in many parts of the world due to a variety of issues.Mycobacterium vaccae(M.vaccae)is another vaccine used in human subjects to prevent tuberculosis.In the current study,we investigated the potential mechanisms of M.vaccae vaccination by determining differentially expressed genes in mice infected with M.tuberculosis before and after M.vaccae vaccination.Methods:Three days after exposure to M.tuberculosis H37 Rv strain(5×10~5 CFU),adult BALB/c mice randomly received either M.vaccae vaccine(22.5μg)or vehicle via intramuscular injection(n=8).Booster immunization was conducted 14 and 28 days after the primary immunization.Differentially expressed genes were identified by microarray followed by standard bioinformatics analysis.Results:M.vaccae vaccination provided protection against M.tuberculosis infection(most prominent in the lungs).We identified 2,326 upregulated and 2,221 downregulated genes in vaccinated mice.These changes could be mapped to a total of 123 signaling pathways(68 upregulated and 55 downregulated).Further analysis pinpointed to the MyD88-dependent TLR signaling pathway and PI3 K-Akt signaling pathway as most likely to be functional.Conclusions:M.vaccae vaccine provided good protection in mice against M.tuberculosis infection,via a highly complex set of molecular changes.Our findings may provide clue to guide development of more effective vaccine against tuberculosis.
文摘BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncogenes and downregulate tumor suppressor genes without changing the sequences.However, studies of methylation in the control of gene expression are still inadequate. In the present research, we performed bioinformatics analysis to clarify the function of methylation and supply candidate methylation-related biomarkers and drivers for colon cancer.AIM To identify and analyze methylation-regulated differentially expressed genes(MeDEGs) in colon cancer by bioinformatics analysis.METHODS We downloaded RNA expression profiles, Illumina Human Methylation 450 K BeadChip data, and clinical data of colon cancer from The Cancer Genome Atlas project. MeDEGs were identified by analyzing the gene expression and methylation levels using the edgeR and limma package in R software. Gene ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed in the DAVID database and KEGG Orthology-Based Annotation System 3.0, respectively. We then conducted Kaplan–Meier survival analysis to explore the relationship between methylation and expression and prognosis. Gene set enrichment analysis(GSEA) and investigation of protein-protein interactions(PPI) were performed to clarify the function of prognosis-related genes.RESULTS A total of 5 up-regulated and 81 down-regulated genes were identified asMeDEGs. GO and KEGG pathway analyses indicated that MeDEGs were enriched in multiple cancer-related terms. Furthermore, Kaplan–Meier survival analysis showed that the prognosis was negatively associated with the methylation status of glial cell-derived neurotrophic factor(GDNF) and reelin(RELN). In PPI networks, GDNF and RELN interact with neural cell adhesion molecule 1. Besides, GDNF can interact with GDNF family receptor alpha(GFRA1), GFRA2, GFRA3, and RET. RELN can interact with RAFAH1 B1,disabled homolog 1, very low-density lipoprotein receptor, lipoprotein receptorrelated protein 8, and NMDA 2 B. Based on GSEA, hypermethylation of GDNF and RELN were both significantly associated with pathways including "RNA degradation," "ribosome," "mismatch repair," "cell cycle" and "base excision repair."CONCLUSION Aberrant DNA methylation plays an important role in colon cancer progression.MeDEGs that are associated with the overall survival of patients may be potential targets in tumor diagnosis and treatment.
基金financially supported by grants from the National Natural Science Foundation of China(31471485)Natural Science Foundation of Beijing Citythe Key Developmental Project of Science and Technology from Beijing Municipal Commission of Education(KZ201410028031)
文摘Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar(Jimai 20) during grain development using the Gene Chip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis(DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves.Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and Map Man analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by q RT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.
基金Basic Public Welfare Research Foundation of Zhejiang Province,China,No.GD21H290001and Traditional Chinese Medicine Science and Technology Project Foundation of Zhejiang Province,China,No.2020ZB072.
文摘BACKGROUND Sepsis is a major medical challenge.Magnolol is an active constituent of Houpu that improves tissue function and exerts strong anti-endotoxin and anti-inflammatory effects,but the mechanism by which it reduces intestinal inflammation in sepsis is yet unclear.AIM To assess the protective effect of magnolol on intestinal mucosal epithelial cells in sepsis and elucidate the underlying mechanisms.METHODS Enzyme-linked immunosorbent assay was used to measure tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),IL-6,and regulated on activation,normal T-cell expressed and secreted(RANTES)levels in serum and ileal tissue in animal studies.The histopathological changes of the ileal mucosa in different groups were observed under a microscope.Cell Counting Kit-8 and cell permeability assays were used to determine the concentration of drug-containing serum that did not affect the activity of Caco2 cells but inhibited lipopolysaccharide(LPS)-induced decrease in permeability.Immunofluorescence and Western blot assays were used to detect the levels of RANTES,inhibitor of nuclear factor kappa-B kinaseβ(IKKβ),phosphorylated IKKβ(p-IKKβ),inhibitor of nuclear factor kappa-B kinaseα(IκBα),p65,and p-p65 proteins in different groups in vitro.RESULTS In rats treated with LPS by intravenous tail injection in the presence or absence of magnolol,magnolol inhibited the expression of proinflammatory cytokines,IL-1β,IL-6,and TNF-αin a dose-dependent manner.In addition,magnolol suppressed the production of RANTES in LPS-stimulated sepsis rats.Moreover,in vitro studies suggested that magnolol inhibited the increase of p65 nucleation,thereby markedly downregulating the production of the phosphorylated form of IKKβin LPS-treated Caco2 cells.Specifically,magnolol inhibited the translocation of the transcription factor nuclear factor-kappa B(NF-κB)from the cytosol into the nucleus and down-regulated the expression level of the chemokine RANTES in LPS-stimulated Caco2 cells.CONCLUSION Magnolol down-regulates RANTES levels by inhibiting the LPS/NF-κB signaling pathways,thereby suppressing IL-1β,IL-6,and TNF-αexpression to alleviate the mucosal barrier dysfunction in sepsis.
基金The Key Science and Technology Program of Shandong Province under contract No. 2012GHY11527Natural Science Foundation of Shandong Province under contract No. Q2007E02+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (New Teachers) under contract No. 20070423027the Public Science and Technology Research Funds Projects of Ocean, State Oceanic Administration of the People’s Republic of China under contract No. 201105021-8
文摘Zostera marina, a monocotyledonous angiosperm, is one of the most important seagrass species. To inves- tigate the salt-tolerance mechanism and discover salt-tolerant genes in Z. marina, a cDNA library was con- structed. Single-pass sequencing of the 5' ends of 4 081 clones yielded 4 002 high quality expressed sequence tags (ESTs), which were assembled into 241 contigs and 1 673 singletons, representing 1 914 unigenes. The average length of the ESTs was 582 bp, with sizes ranging from 100-1 500 bp. Basic Local Alignment Search Tool (BLASTX) analysis revealed that 1 664 unigenes had significant homology to known genes in the Na- tional Center for Biotechnology Information (NCBI) non-redundant (nr) database (E-value≤5-10). Among them, the two most abundant genes encoded metallothionein (157 ESTs) and chlorophyll a/b-binding pro- tein (38 ESTs), accounting for 7.1% and 1.7% of the total ESTs, respectively. Using Kyoto Encyclopedia of Genes and Genomes (KEGG), 1 462 unigenes were assigned to 1 161 pathways (E-value≤5-10). A total of 938 unigenes were assigned Gene Ontology (GO) terms based on the GO hierarchy analysis, and InterProScan searches recognized 1 003 InterPro families. Three genes for metallothionein in Z. marina that belonged to Class II was identified. Results of this study will improve understanding of the molecular mechanisms of saline tolerance in Z. marina.
基金funded by the Fundamental Research Funds for the Central Universities(BLYJ201517)the Program for New Century Excellent Talents in University by the Ministry of Education,China(NCET-10-0223)
文摘Blooming date is an important trait in fruit tree species.Although several quantitative trait loci confirming blooming date were identified in Prunus spp.,the molecular mechanism underlying it remains unclear.Arising from this,the transcriptomes of normal blooming and lateblooming Siberian apricot(P.sibirica L.)flower buds were analyzed using RNA-seq technology.A total of 68,855 unigenes were de novo assembled,among which 1204 were differentially expressed between normal and late blooming.Gene ontology enrichment analysis revealed that biological processes were enriched with metabolic processes.The catalytic-related gene transcripts between the two types of blooming were significantly changed in the molecular function.Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 156 genes were successfully annotated and 75 pathways enriched.Genes for gibberellin biosynthesis were up-regulated in normal blooming,whereas abscisic acid degradation-related genes were also up-regulated in normal blooming.Moreover,circadian rhythms related genes including EARLY FLOWERING 4,LATE ELONGATED HYPOCOTYL and CIRCANDIAN CLOCK ASSOCIATED1 were all up-regulated in normal blooming,indicating that circadian rhythms have a very important role in controlling blooming date.Furthermore,zinc finger protein CONSTANS-LIKE 12 was blasted onto the quantitative trait loci region on linkage group 4 in peach.However,changes in the abundance of key flowering genes such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1,FLOWERING LOCU T,LEAFY and FLOWERING LOCUS C were not significantly different,indicating that further investigation should explore the function of these genes on blooming date.The outcomes of this study will provide a valuable platform for further research on the molecular mechanism of blooming date in Prunus.
基金Supported by the Scientific and Technical Supporting Programs of China (2008BAC49B01)the National Natural Science Foundation of China (No. 30830015)
文摘In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera (Ulva prolifera O. F. Miiller), a familiar green macroalga along the coastline of China. Rapid accumulation of a large biomass of floating U. prolifera prompted research on different aspects of this species. In this study, we constructed a nonnormalized cDNA library from the thalli of U. prolifera and acquired 10072 high-quality expressed sequence tags (ESTs). These ESTs were assembled into 3 519 nonredundant gene groups, including 1 446 clusters and 2 073 singletons. After annotation with the nr database, a large number of genes were found to be related with chloroplast and ribosomal protein, GO functional classification showed 1 418 ESTs participated in photosynthesis and 1 359 ESTs were responsible for the generation of precursor metabolites and energy. In addition, rather comprehensive carbon fixation pathways were found in U. prolifera using KEGG. Some stress-related and signal transduction-related genes were also found in this study. All the evidences displayed that U. prolifera had substance and energy foundation for the intense photosynthesis and the rapid proliferation. Phylogenetic analysis of cytochrome c oxidase subunit I revealed that this green-tide causative species is most closely affiliated to Pseudendoclonium akinetum (Ulvophyceae).
基金supported by the Natural Science Foundation of Shaanxi Province of China,No.2018JQ8029(to LG)
文摘Gene spectrum analysis has shown that gene expression and signaling pathways change dramatically after spinal cord injury,which may affect the microenvironment of the damaged site.Microarray analysis provides a new opportunity for investigating diagnosis,treatment,and prognosis of spinal cord injury.However,differentially expressed genes are not consistent among studies,and many key genes and signaling pathways have not yet been accurately studied.GSE5296 was retrieved from the Gene Expression Omnibus DataSet.Differentially expressed genes were obtained using R/Bioconductor software(expression changed at least two-fold;P < 0.05).Database for Annotation,Visualization and Integrated Discovery was used for functional annotation of differentially expressed genes and Animal Transcription Factor Database for predicting potential transcription factors.The resulting transcription regulatory protein interaction network was mapped to screen representative genes and investigate their diagnostic and therapeutic value for disease.In total,this study identified 109 genes that were upregulated and 30 that were downregulated at 0.5,4,and 24 hours,and 3,7,and 28 days after spinal cord injury.The number of downregulated genes was smaller than the number of upregulated genes at each time point.Database for Annotation,Visualization and Integrated Discovery analysis found that many inflammation-related pathways were upregulated in injured spinal cord.Additionally,expression levels of these inflammation-related genes were maintained for at least 28 days.Moreover,399 regulation modes and 77 nodes were shown in the protein-protein interaction network of upregulated differentially expressed genes.Among the 10 upregulated differentially expressed genes with the highest degrees of distribution,six genes were transcription factors.Among these transcription factors,ATF3 showed the greatest change.ATF3 was upregulated within 30 minutes,and its expression levels remained high at28 days after spinal cord injury.These key genes screened by bioinformatics tools can be used as biological markers to diagnose diseases and provide a reference for identifying therapeutic targets.
基金the National Natural Science Foundation of China,No.81600747(to YD)a grant from Liaoning Department of Education,No.QNZR2020010(to YD)a grant from 345 Talent Project of Shengjing Hospital(to YD).
文摘The mouse model of oxygen induced retinopathy is suitable for the study of various retinal neovascularization diseases,including retinopathy of prematurity.The maternally expressed gene 3(MEG3)has been demonstrated to have an inhibitory effect on diabetic retinopathy.In this study,we investigated the role of MEG3 overexpression in oxygen-induced retinopathy in mice.The results showed that MEG3 overexpression effectively inhibited the production of retinal neovascularization in oxygen-induced retinopathy mice.It acts by down-regulating the expression of phosphoinositide 3-kinase,serine/threonine kinase,and vascular endothelial growth factor and pro-inflammatory factors.MEG3 overexpression lentivirus has a future as a new method for the clinical treatment of retinopathy of prematurity.The animal experiments were approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University,China(approval No.2016PS074K)on February 25,2016.
基金National Natural Science Foundation of China(30100160,30271179)
文摘Objective: To construct recombinant retroviral vector containing HIV-1 Tatgene and evaluate the junction of the expressed Tat in target cells. Methods: HIV-1 Tat_(101) genewas recovered from pEV plasmid by Hind Ⅲ digestion and cloned into expression plasmid LZESpBMN-Z toconstruct recombinant retroviral expression plasmid named LZRS-Tat_(101). Using the method ofcalcium phosphate, the construct of LZRS-Tat_(101) was then transfected into packaging cell linesPhoenix (ΦNX) which contained env and gal genes encoding structural proteins and pol gene codingfor 3 enzymes ( reverse transcriptase, protease and integrate) essential for retroviral integrationand replication . The stable transfected cell lines was obtained using puromycin to screen for morethan 3 days. Then, immunohistochemical (IHC ) staining was carried out to detect the expressionlevel of Tat_(101) protein in both transiently and stably trancfected ΦNX, respectively. Thesupematants containing recombinant virus collected from transient and stable transfected cells wereemployed to infect 293 cells, respectively, and the expressed Tat in 293 cells was tested by Westernblot. Meantime, the supematants of infected 293 cells was further added to HL3T1 cells which wereHela cell lines containing an HIV-1-LTR/CAT reporter construct to establish a co-culture system.After co-culture for 72 hours, the protein was extracted from HL3T1 cells and used for CAT activityassay. Results: After LZRS- Tat_(101) was transfected into ΦNX, the amount of expressed Tat intransient transfection cells was significantly higher than that in stable transfection cells; Tatcould be detected not only in 293 cells but also in the supematants from 293 cells culture, and Tatin the supematants could activate HIV-1 LTR promoter in HL3T1, resulting in high 'expression of CATlocated at the downstream of LTR. Conclusion: The construct of recombinant retrovirus LZRS-Tat_(101) could express Tat protein in target cells and the expressed Tat was functionally activeand can really exhibit the ability to activate transcription.
基金Supported by the Natural Science Foundation of China(No.81803996)the Major Clinical Research Project of the Army(No.2006021003)+1 种基金the Training Plan on Excellent Academic Leader of Shanghai Health System(No.XBR2011070)Construction of Clinical Basic Discipline of TCM(No.A1-Z183020110)。
文摘OBJECTIVE: To investigate the role of tongue coating fluid protein in regulation of congestive heart failure(CHF) in Qi-deficiency-blood-stasis syndrome.METHODS: We studied patients with CHF(3 patients with Qi-deficiency-blood-stasis syndrome and 3 without Qi-deficiency-blood-stasis syndrome) to investigate differentially expressed proteins. We also included a control group. A biotin label-based antibody array was used for testing tongue coating fluid samples from patients. Net-work analysis of these differentially expressed proteins was conducted using the STRING database,which can predict the relations between differentially expressed proteins and CHF with Qi-deficiency-blood-stasis syndrome.RESULTS: A total of seven differentially expressed proteins were identified, and among these, transforming growth factor β1(TGF-β1) gets a particular attention for us has drawn specific attention.Network analysis showed a homologous relationship of TGF-β1 with bone morphogenetic protein15, which is associated with myocardial fibrosis.CONCLUSION: Occurrence and development of CHF may result from certain DE-proteins and associated signaling pathways. TGF-β1 protein may be a candidate marker for assessing the risk of CHF in Qideficiency-blood-stasis syndrome.
基金supported by the National Basic Research Program of China(2007CB116201)
文摘Porcine skeletal muscle genes play a major role in determining muscle growth and meat quality. Construction of a full-length cDNA library is an effective way to understand the expression of functional genes in muscle tissues. In addition, novel genes for further research could be identified in the library. In this study, we constructed a full-length cDNA library from porcine muscle tissue. The estimated average size of the cDNA inserts was 1 076 bp, and the cDNA fullness ratio was 86.2%. A total of 1 058 unique sequences with 342 contigs (32.3%) and 716 singleton (67.7%) expressed sequence tags (EST) were obtained by clustering and assembling. Meanwhile, 826 (78.1%) ESTs were categorized as known genes, and 232 (21.9%) ESTs were categorized as unknown genes. 65 novel porcine genes that exhibit no identity in the TIGR gene index of Sus scrofa and 124 full-length sequences with unknown functions were deposited in the dbEST division of GenBank (accession numbers: EU650784-EU650788, GE843306, GH228978-GH229100). The abundantly expressed genes in porcine muscle tissue were related to muscle fiber development, energy metabolism and protein synthesis. Gene ontology analysis showed that sequences expressed in porcine muscle tissue contained a high percentage of binding activity, catalytic activity, structural molecule activity and motor activity, which involved mainly in metabolic, cellular and developmental process, distributed mainly in intracellular region. The sequence data generated in this study would provide valuable information for identifying porcine genes expressed in muscle tissue and help to advance the study on the structure and function of genes in pigs.
基金supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA10A410)the National Project for Agricultural Technology System (No. CARS-48)+1 种基金National Infrastructure of Fishery Germplasm Resources of China (No. 2015DKA30470)Zhejiang Major Program of Science and Technology (No. 2012C12907-4)
文摘Blood clam, Tegillarca granosa, is an important shellfish in Chinese mariculture industry. Investigative research in this species, such as genetic linkage mapping, requires a large panel of molecular markers. In present study, a total of 89 polymorphic microsatellite markers were developed in T. granosa using the sequence database of Life Sciences Technology 454 next generation sequencing technology. All 89 loci were characterized in 20 individual clams from a natural population inhabiting Yueqing Gulf, Zhejiang Province, China. The number of alleles per polymorphic locus varied between 2 and 15, while the observed heterozygosity, expected heterozygosity and polymorphic information content varied between 0.000 and 1.000, 0.102 and 0.921, and 0.048 and 0.886, respectively. Of the 89 loci identified, 32 loci deviated significantly from Hardy-Weinberg equilibrium following Bonferroni correction. Thirty nine markers, which were shown to be polymorphic in a full-sibling family, were tested in Mendelian segregations. As expected, 32 loci were co-dominantly segregated in a Mendelian fashion. These novel developed microsatellite markers represent useful research tools for investigation of population genetic structure and genetic diversity in this species.
文摘One of the impediments in the genetic improvement of cotton fiber is the paucity of information about genes associated with fiber development.Availability of chromosome arm substitution line CS-
基金supported by grants from the National Natural Sciences Foundation of China (No. 30200284,No. 30600278,No. 30772359)Program for New Century Excellent Talents in University (NCET-06-0641)Scientific Research Foundation for the Returned Overseas Chinese Scholars (2008-889)
文摘In our previous study, we identified a novel testis-specific expressed gene 2 (TSEG-2) from mouse testis. To further investigate its functions, 35 male Balb/c mice (8 weeks old) were divided into cryptorchidism group (n=20), sham group (n=10), and control group (n=5). In cryptorchidism group, the right testes were anchored to the inner lateral abdominal wall. In situ hybridization (ISH) was applied to measure the localization of TSEG-2 in mouse testis. Real-time quantitative PCR was performed to detect the expression of TSEG-2 gene. Meanwhile, under the mediation of polyethylenimine (PEI), the recombinant vector pEGFP-TSEG-2 (n=5) or empty vector (mock, n=5) was transfected into the testis of male mice. The transfection efficiencies were measured under a fluorescence microscope. The apoptosis of spermatogenic cells was detected by terminal deoxynuleotidyl-mediated nick end labeling (TUNEL). The results showed that TSEG-2 was expressed in convoluted seminiferous tubules, more precisely, in spermatogonia and spermatocytes. As compared with sham and control groups, the TSEG-2 transcription was significantly enhanced (P〈0.05) and was correlated with apoptosis of spermatogenic cells in cryptorchid testes (P〈0.05). PEI was efficient in mediating transfeetion of TSEG-2 into seminiferous tubules of testis. One week post-transfection, intratesticular injection of TSEG-2 resulted in increased apoptosis of spermatogenic cells in vivo (P〈0.05). These results indicate that TSEG-2 may participate in the apoptosis of spermatogenic cells and the pathogenesis of cryptorchidism.