期刊文献+
共找到1,286篇文章
< 1 2 65 >
每页显示 20 50 100
Microstructure and Mechanical Properties of Explosively Welded Nickel/Steel Composite Plate Interface
1
作者 Li Yan Wang Guicheng +3 位作者 Zhang Wenbin Yang Haijuan Li Jucai Liu Cuirong 《稀有金属材料与工程》 北大核心 2025年第8期1971-1979,共9页
High-performance pure nickel N6/steel 45#composite plate(N6/45#)was prepared using explosive welding technique.The microstructure of the interface and nearby regions was characterized and analyzed by optical microscop... High-performance pure nickel N6/steel 45#composite plate(N6/45#)was prepared using explosive welding technique.The microstructure of the interface and nearby regions was characterized and analyzed by optical microscope,scanning electron microscope,electron backscatter diffraction,and mechanical property testing,and the microstructural features and mechanical properties of the explosive welding interface were explored.The results show that along the direction of explosive welding,the pure nickel N6/steel 45#composite plate interface gradually evolves from a flat bond to a typical wavy bond.The grains at the crests and troughs exhibit high heterogeneity,and the closer to the interface,the finer the grains.Recrystallization and low-stress deformation bands are formed at the bonding interface.Nanoindentation tests reveal that plastic deformation occurs in the interfacial bonding zone,and the nanohardness values in the crest regions are higher than that in the trough regions.The tensile strength of the N6/45#interface is 599.8 MPa,with an average shear strength of 326.3 MPa.No separation phenomenon is observed between N6 and 45#after the bending test. 展开更多
关键词 explosive welding pure nickel N6/steel 45#composite plate MICROSTRUCTURE NANOINDENTATION
原文传递
Damage of a large-scale reinforced concrete wall caused by an explosively formed projectile(EFP) 被引量:1
2
作者 Li-kai Hao Wen-bin Gu +5 位作者 Ya-dong Zhang Qi Yuan Xing-bo Xie Shao-xin Zou Zhen Wang Ming Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期280-297,共18页
To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetratio... To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetration and explosion shock wave were studied.Based on LS-DYNA finite element software and RHT model with modified parameters,a 3D large-scale numerical model was established for simulation analysis,and the rationality of the material model parameters and numerical simulation algorithm were verified.On this basis,the combined damage effect of EFP penetration and explosion shock wave on reinforced concrete wall was studied,the effect of steel bars on the penetration of EFP was highlighted,and the effect of impact positions on the damage of the reinforced concrete wall was also examined.The results reveal that the designed shaped charge can form a crater with a large diameter and high depth on the reinforced concrete wall.The average crater diameter is greater than 67 cm(5.58 times of charge diameter),and crater depth is greater than 22 cm(1.83 times of charge diameter).The failure of the reinforced concrete wall is mainly caused by EFP penetration.When only EFP penetration is considered,the average diameter and depth of the crater are 54.0 cm(4.50 times of charge diameter)and 23.7 cm(1.98 times of charge diameter),respectively.The effect of explosion shock wave on crater depth is not significant,resulting in a slight increase in crater depth.The average crater depth is 24.5 cm(2.04 times of charge diameter)when the explosion shock wave is considered.The effect of explosion shock wave on the crater diameter is obvious,which can aggravate the damage range of the crater,and the effect gradually decreases with the increase of standoff distance.Compared with the results for a plain concrete wall,the crater diameter and crater depth of the reinforced concrete wall are reduced by 5.94%and 9.96%,respectively.Compared to the case in which the steel bar is not hit,when the EFP hit one steel bar and the intersection of two steel bars,the crater diameter decreases by 1.36%and 5.45%respectively,the crater depth decreases by 4.92%and 14.02%respectively.The EFP will be split by steel bar during the penetration process,resulting in an irregular trajectory. 展开更多
关键词 Reinforced concrete explosively formed projectile(EFP) PENETRATION Explosion shock wave Numerical simulation
在线阅读 下载PDF
Molecular Dynamics Simulations and Experimental Investigations of Atomic Diffusion Behavior at Bonding Interface in an Explosively Welded Al/Mg Alloy Composite Plate 被引量:14
3
作者 Ting-Ting Zhang Wen-Xian Wang +3 位作者 Jun Zhou Xiao-Qing Cao Rui-Shan Xie Yi Wei 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第10期983-991,共9页
In this study, 6061 aluminum alloy and AZ31 B magnesium alloy composite plate was fabricated through explosive welding. Molecular dynamics(MD) simulations were conducted to investigate atomic diffusion behavior at b... In this study, 6061 aluminum alloy and AZ31 B magnesium alloy composite plate was fabricated through explosive welding. Molecular dynamics(MD) simulations were conducted to investigate atomic diffusion behavior at bonding interface in the AI/Mg composite plate. Corresponding experiments were conducted to validate the simulation results. The results show that diffusion coefficient of Mg atom is larger than that of A1 atom and the difference between these two coefficients becomes smaller with increasing collision velocity. The diffusion coefficient was found to depend on collision velocity and angle. It increases linearly with collision velocity when the collision angle is maintained constant at 10° and decreases linearly with collision angle when the collision velocity is maintained constantly at 440 m/s. Based on our MD simulation results and Fick's second law, a mathematical formula to calculate the thickness of diffusion layer was proposed and its validity was verified by relevant experiments. Transmission electron microscopy and energy-dispersive system were also used to investigate the atomic diffusion behavior at the bonding interface in the explosively welded 6061/AZ31B composite plate. The results show that there were obvious Al and Mg atom diffusion at the bonding interface,and the diffusion of magnesium atoms from magnesium alloy plate to aluminum alloy plate occurs much faster than the diffusion of aluminum atoms to the magnesium alloy plate. These findings from the current study can help to optimize the explosive welding process. 展开更多
关键词 Al/Mg composite plate Explosive welding Molecular dynamics simulation Atomic diffusionbehavior
原文传递
Effect of postweld heat treatment on interface microstructure and metallurgical properties of explosively welded bronze–carbon steel 被引量:8
4
作者 KHANZADEH GHARAHSHIRAN Mohammad Reza KHOSHAKHLAGH Ali +2 位作者 KHALAJ Gholamreza BAKHTIARI Hamid BANIHASHEMI Ali Reza 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1849-1861,共13页
The effects of postweld heat treatment on the microstructure and metallurgical properties of a bronze–carbon steel(st37)explosively bonded interface were studied.Explosive welding was done under 1.5-and 2-mm standoff... The effects of postweld heat treatment on the microstructure and metallurgical properties of a bronze–carbon steel(st37)explosively bonded interface were studied.Explosive welding was done under 1.5-and 2-mm standoff distances and different conditions of explosive charge.Samples were postweld heat treated for 4 and 16 h in the furnace at 250°C and 500°C and then air cooled.Laboratory studies using optical microscopy,scanning electron microscopy,and microhardness testing were used to evaluate the welded samples.Microstructural examinations showed that by increasing the standoff distance and the explosive charge,the interface of bronze to steel became wavier.The microhardness test result showed that the hardness of the samples was higher near the joint interface compared with other areas because of the intensive plastic deformation,which was caused by the explosion force.The results show that increasing the heat treatment temperature and time caused the intermetallic compounds’layer thickness to increase,and,because of the higher diffusion of copper and tin,the iron amount in the intermetallic compounds decreased.Also,because of the increase in heat treatment temperature and time,internal stresses were released,and the interface hardness decreased. 展开更多
关键词 heat treatment explosive welding intermetallic compound standoff distance diffusion layer
在线阅读 下载PDF
Bonding Interface of W-CuCrZr Explosively Welded Composite Plates for Plasma Facing Components 被引量:4
5
作者 Congxiao Sun Shuming Wang +2 位作者 Wenhao Guo Weiping Shen Changchun Ge 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第12期1230-1234,共5页
In order to realize the effective jointing of tungsten and Cu Cr Zr alloys manufactured for plasma facing components(PFCs), explosive welding is employed for its some unique advantages. Different welding characteris... In order to realize the effective jointing of tungsten and Cu Cr Zr alloys manufactured for plasma facing components(PFCs), explosive welding is employed for its some unique advantages. Different welding characteristics were investigated in this study. The interfacial waveform of the welded plates changed periodically from flat-wavelet to a large wave and finally to a stable wave, which began with the detonation point. The bonding strength of the specimens is higher than 32.9 MPa. Welding hardening and the formation of microcracks occurred at the interface zone. The results demonstrate that the joining reliabilities need to be improved in order to meet the need of applications involving the use of explosive welding to fabricate tungsten-based PFCs. 展开更多
关键词 Explosive welding W-CuCrZr Interfacial waveform Plasma facing components Bonding strength
原文传递
Microstructure and Martensitic Transformation Behaviors of Explosively Welded NiTi/NiTi Laminates 被引量:1
6
作者 YAN Zhu CUI Li-shan ZHENG Yan-jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第2期168-171,共4页
The study is a first attempt to prepare bulk NiTi/NiTi shape memory alloy (SMA) laminates with a macroscopic heterogeneous composition by explosive welding and investigate their microstructures and martensitic trans... The study is a first attempt to prepare bulk NiTi/NiTi shape memory alloy (SMA) laminates with a macroscopic heterogeneous composition by explosive welding and investigate their microstructures and martensitic transformation behaviors. After explosive weld- ing, a perfect interfacial bonding between the two components and a reversible martensitic transformation are realized in the tandem. Results show achievement of a fine granular structure and the maximum value of microhardness near the welding interface because of the excessive cold plastic deformation and the high impact velocity during the explosive welding. Meanwhile, the effects of aging on the transformation of the welded tandem are investigated by differential scanning calorimeter (DSC) and subject to discussion. The trans- formation temperatures of NiTi/NiTi SMAs increase with the rise of the aging temperature. The experimental results indicate the shape memory properties of NiTi/NiTi SMA fabricated by explosive welding can be improved by optimizing the aging technology. 展开更多
关键词 NITI shape memory alloy explosive welding martensitic transformation
在线阅读 下载PDF
Experimental and numerical studies of titanium foil/steel explosively welded clad plate 被引量:1
7
作者 Zhi-xiong Bi Xue-jiao Li +7 位作者 Ke Yang Rong Kai Quan Wang Meng-ben Xu Ting-zhao Zhang Xian-de Dai Jing-ye Qian Yong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期192-202,共11页
Ti/Fe clad plate had attracted extensive attention because of its important application. In order to reduce the titanium layer thickness, the explosive welding of TA1 titanium foil to Q235 steel plate was carried out.... Ti/Fe clad plate had attracted extensive attention because of its important application. In order to reduce the titanium layer thickness, the explosive welding of TA1 titanium foil to Q235 steel plate was carried out. The interfacial bonding performance was analyzed by micromorphology analysis and mechanical property test, and the formation process of interfacial wave and molten block in the vortex was simulated by smoothed particle hydrodynamics(SPH) method. The results showed that salt as pressure transfer layer used in explosive welding could play a good buffer effect on the collision between flyer and base layers. Regular waveforms were formed on the bonding interface, and the titanium foil/steel clad plate exhibited good welding quality and bonding property. The crest of the observed interfacial wave moved 200 μm from the beginning to the final formation, and it was important of jet on the formation of interfacial waveform. The interface was mainly bonded in the form of molten layer, and the grains near the interface were streamlined. Molten block containing intermetallic compounds and metal oxides appeared in the vortex of wave crest. 展开更多
关键词 Explosive welding Pressure transfer layer Titanium foil Simulation Bonding property
在线阅读 下载PDF
Metallurgical and Corrosion Properties of Explosively Welded Ti6A14V/Low Carbon Steel Clad 被引量:1
8
作者 Nizamettin Kahraman Behcet Giilenc 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期743-748,共6页
Titanium alloy (Ti6Al4V) and low carbon steel (LCS) were joined by explosive welding method using different ratios of explosive. Some metallurgical properties of joined samples were investigated. Joined samples we... Titanium alloy (Ti6Al4V) and low carbon steel (LCS) were joined by explosive welding method using different ratios of explosive. Some metallurgical properties of joined samples were investigated. Joined samples were examined by means of optical microscope, scanning electron microscope (SEM) and tensile-shearing tests. Bending, tensile, hardness and corrosion behaviour of the samples were investigated. Separation was not occurred on the joining interface after tensile-shearing and bending tests. It is seen that hardness of both plates were increased with increasing explosive. It is found that increasing explosive ratio leads to an increase in corrosion. It is also found that corrosion rate was high at the beginning of the experiment but the rate of the corrosion decreased subsequently during the experiment. 展开更多
关键词 Explosive welding Joining CORROSION TI6AL4V Low carbon steel
在线阅读 下载PDF
Effects of Severe Plastic Deformation and Heat Treatment on Transformation Behavior of Explosively Welded Duplex TiNi-TiNi
9
作者 Li Juntao Zheng Yanjun Cui Lishan 《Petroleum Science》 SCIE CAS CSCD 2007年第4期107-112,共6页
The effects of severe plastic deformation and heat treatment on the transformation behavior of explosively welded duplex TiNi-TiNi shape memory alloys (SMAs) were investigated by differential scanning calorimeter (... The effects of severe plastic deformation and heat treatment on the transformation behavior of explosively welded duplex TiNi-TiNi shape memory alloys (SMAs) were investigated by differential scanning calorimeter (DSC) measurements. The explosively welded duplex TiNi-TiNi plate of 0.7 mm thickness was cold-rolled at room temperature to a 60% reduction in thickness and then annealed at different temperatures for different durations. The results showed that low temperature (623-723K) heat-treatment led to the crystallization of the amorphous region, and re-crystallization occurred in the specimens annealed at higher temperatures (over 873 K). Research indicated that the change of martensitic transformation temperature is due to the change of internal stresses with increasing heat treatment temperature. The change of annealing time also led to a change in martensitic transformation temperature, which was associated with the precipitation and decomposition of Ti3Ni4 in TiNi-1. 展开更多
关键词 TINI explosive welding cold rolling martensitic transformation differential scanning calorimeter
原文传递
Two-stage Strain Recovery of Explosively Welded NiTi/NiTi Shape Memory Alloys Prestrained in Martensitic Phase
10
作者 Yan Zhu Cui Lishan Zheng Yanjun 《Petroleum Science》 SCIE CAS CSCD 2006年第3期86-89,共4页
The present work aimed to investigate the transformation behavior and strain recovery characteristics of Ni50.2Ti/Ni51Ti shape memory alloys (SMAs) prepared by explosive welding. The differential scanning calorimet... The present work aimed to investigate the transformation behavior and strain recovery characteristics of Ni50.2Ti/Ni51Ti shape memory alloys (SMAs) prepared by explosive welding. The differential scanning calorimetry (DSC) results showed that the reverse transformation temperatures and the temperature range of NiTi-NiTi alloys increased with increasing prestrain level. Meanwhile, a two-stage strain recovery over a wide temperature range was obtained. 展开更多
关键词 Explosive welding martensitic transformation strain recovery
原文传递
Effect of Annealing on Fly-Line Microstructure and Properties of Explosively Composited Stainless Steel-Stainless Steel Plates
11
作者 Zheng Yuanmou Huang Rongguang Chen Shihong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1999年第2期39-43,共5页
Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure... Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure will diminish through certain annealing process,while the cracks formed from fly-line microstructure will remain.Therefore,fly-line microstructure can be considered as a plastic deformation microstructure and crack source s meanwhile its formation is considered as a special plastic deformation mechanism of metal under explosive load. 展开更多
关键词 explosive joining stainless steel-stainless steel composite plate adiabatic sheer line ANNEALING plastic deformation mechanism
在线阅读 下载PDF
Fine structure characterization of an explosively-welded GH3535/316H bimetallic plate interface
12
作者 Jia Xiao Ming Li +6 位作者 Jian-ping Liang Li Jiang De-jun Wang Xiang-xi Ye Ze-zhong Chen Na-xiu Wang Zhi-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1811-1820,共10页
An explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates to provide a more cost-effective structural material for ultrahigh temperature,molten salt thermal storage systems.The micros... An explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates to provide a more cost-effective structural material for ultrahigh temperature,molten salt thermal storage systems.The microstructure of the bonding interfaces were extensively investigated by scanning electron microscopy,energy dispersive spectrometry,and an electron probe microanalyzer.The bonding interface possessed a periodic,wavy morphology and was adorned by peninsula-or island-like transition zones.At higher magnification,a matrix recrystallization region,fine grain region,columnar grain region,equiaxed grain region,and shrinkage porosity were observed in the transition zones and surrounding area.Electron backscattered diffraction demonstrated that the strain in the recrystallization region of the GH3535 matrix and transition zone was less than the substrate.Strain concentration occurred at the interface and the solidification defects in the transition zone.The dislocation substructure in 316H near the interface was characterized by electron channeling contrast imaging.A dislocation network was formed in the grains of 316H.The microhardness decreased as the distance from the welding interface increased and the lowest hardness was inside the transition zone. 展开更多
关键词 GH3535/316H bimetallic plate ultrahigh temperature molten salt explosive welding interface structure dislocation substructure
在线阅读 下载PDF
进化的“寒武纪生命大爆发”——(一)一个让达尔文“挠头”的现象
13
作者 郭建崴 《化石》 2025年第3期31-33,共3页
“寒武纪生命大爆发”(Cambrian Explosion)这一术语,是英国古生物学家布雷希尔(M.D.Brasier)在1979年正式提出的,其最新含义是指“距今5.41亿-5.2亿年的寒武纪早期生物多样性突然增加,几乎主要的现生后生动物门及一些已灭绝的动物线系... “寒武纪生命大爆发”(Cambrian Explosion)这一术语,是英国古生物学家布雷希尔(M.D.Brasier)在1979年正式提出的,其最新含义是指“距今5.41亿-5.2亿年的寒武纪早期生物多样性突然增加,几乎主要的现生后生动物门及一些已灭绝的动物线系类群均出现或起源于这一时期,显示在漫长的生物进化历史中寒武纪早期是最重要的时期之一,动物(尤其是在门一级的分类阶元)的辐射进化呈爆发性。” 展开更多
关键词 寒武纪生命大爆发 Cambrian Explosion
在线阅读 下载PDF
Preparation and Performance of Large-Size Seamless Zirconium-Titanium-Steel Composite Plate 被引量:1
14
作者 Wu Jiangtao Wang Ding +7 位作者 Huang Xingli Zou Juntao Zhang Penghui Gao Ruibo Yang Huan Zhang Tao Ren Qianyu Wei Yong 《稀有金属材料与工程》 北大核心 2025年第2期319-326,共8页
Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,p... Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved. 展开更多
关键词 large-size seamless zirconium-titanium-steel composite plate explosive welding+rolling phased array interface structure
原文传递
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
15
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Study on cook-off characteristics and thermal safety venting area of RBOE charge 被引量:1
16
作者 Kebin Zhang Wenbin Li +3 位作者 Changfang Zhao Zhifang Wei Shuxia Zhang Jin Li 《Defence Technology(防务技术)》 2025年第1期271-287,共17页
RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomp... RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads. 展开更多
关键词 RBOE explosive Cook-off model Temperature distribution Pressure growth Venting area
在线阅读 下载PDF
Surface-covering water significantly amplifies the explosion impulse of shallow buried explosives 被引量:1
17
作者 Zhenyu Zhao Wenbo Gao +6 位作者 Jianwei Ren Zihan Lan Zhiyang Zhang Huiyao Gao Chao He Changye Ni Tianjian Lu 《Defence Technology(防务技术)》 2025年第6期156-172,共17页
While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and ... While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs. 展开更多
关键词 Shallow buried explosives Fluid-structure interaction Surface-covering water Impulse distribution
在线阅读 下载PDF
A DIAGNOSTIC STUDY OF AN EXPLOSIVELY DEEPENING OCEANIC CYCLONE OVER THE NORTHWEST PACIFIC 被引量:1
18
作者 李长青 丁一汇 《Acta meteorologica Sinica》 SCIE 1990年第3期361-372,共12页
The vertical motions and secondary circulation of an explosively deepening oceanic cyclone,which oc- curred over the Northwest Pacific Ocean and was in conjunction with 200 hPa-level jet stream and has central pressur... The vertical motions and secondary circulation of an explosively deepening oceanic cyclone,which oc- curred over the Northwest Pacific Ocean and was in conjunction with 200 hPa-level jet stream and has central pressure falls of 33.9 hPa/24h,have been computed from seven-level nonlinear balance model and Saw- yer-Eliassen-Shapiro equation for the transverse ageostrophic circulation.The vertical motions are partitioned into contributions from large-scale latent heat release,effect of cumulus heating,thermal advection,differen- tial vorticity advection,etc.,while the secondary circulation stream function is partitioned into contributions from geostrophic deformation,transfer of momentum and heat in the area of cumulus and diabatic heating. The principal results are the following.Large-scale latent heat release is very crucial to the explosive de- velopment of cyclones.If there is enough transfer of moisture,the positive feedback process between ascent of air and large-scale heating would work.The cumulus heating and the transfer of momentum and heat in the area of cumulus play an important role during the explosively deepening stage.Thermal advection is the initial triggering condition for large-scale heating and the conditional instability for the convection of cumulus. 展开更多
关键词 GMT A DIAGNOSTIC STUDY OF AN explosively DEEPENING OCEANIC CYCLONE OVER THE NORTHWEST PACIFIC
在线阅读 下载PDF
Basic theory of dust explosion of energetic materials: A review
19
作者 Mengli Yin Chunyan Wang +4 位作者 Haoyang Guo Yuhuai Shi Shengnan Shi Wenhui Wang Xiong Cao 《Defence Technology(防务技术)》 2025年第6期48-66,共19页
Due to the presence of nitro groups, the dust generated during the production and utilization of energetic materials may potentially lead to dust explosion even under low-oxygen or anaerobic conditions.Considering the... Due to the presence of nitro groups, the dust generated during the production and utilization of energetic materials may potentially lead to dust explosion even under low-oxygen or anaerobic conditions.Considering the high energy density of energetic materials, dust explosion can cause serious production safety accidents. Therefore, it is necessary to understand the dust explosion characteristics of energetic materials and the mechanism of dust explosion. According to the literature review, among various influencing factors, the physical and chemical properties of dust are the decisive factors affecting the explosion characteristics of dust. In addition to experimental studies, numerical simulation is another important tool. However, it is subjected to certain limitations. Moreover, it is essential but challenging to fully understand the underlying mechanism. In addition, given the safety hazards posed by dust explosion, explosion suppression has attracted extensive attention for research. Depending on the medium used, there are different forms of suppression, including powder explosion suppression, water spray explosion suppression, inert gas explosion suppression, porous material explosion suppression, and vacuum chamber explosion suppression. As for the selection of explosion suppression agent, consideration must be given to the characteristics of the material. Furthermore, the above research has laid a foundation for discussing the future progress in studying dust explosion of energetic materials, with nano dust and the constraints of existing technology as the focal point. 展开更多
关键词 Energetic dust explosion Influencing factors CFD simulation Explosion mechanism Explosion suppression Nano dust
在线阅读 下载PDF
CO_(2)-H_(2)O co-electrolysis to CO/O_(2) for safe oxidative double carbonylation of ethylene/acetylene
20
作者 Yanwei Cao Yunhao Qu +5 位作者 Bin Su Gongwei Wang Yang Huang Zhenmin Luo Lin Zhuang Lin He 《Chinese Journal of Catalysis》 2025年第7期202-210,共9页
Upgrading carbon dioxide(CO_(2))into value-added bulk chemicals offers a dual-benefit strategy for the carbon neutrality and circular carbon economy.Herein,we develop an integrated CO_(2) valorization strategy that sy... Upgrading carbon dioxide(CO_(2))into value-added bulk chemicals offers a dual-benefit strategy for the carbon neutrality and circular carbon economy.Herein,we develop an integrated CO_(2) valorization strategy that synergizes CO_(2)-H_(2)O co-electrolysis(producing CO/O_(2) feeds)with oxidative double carbonylation of ethylene/acetylene to synthesize CO_(2)-derived C_(4) diesters(dimethyl succinate,fumarate,and maleate).A group of versatile building blocks for manufacturing plasticizers,biodegradable polymers,and pharmaceutical intermediates.Remarkably,CO_(2) exhibits dual functionality:serving simultaneously as a CO/O_(2) source and an explosion suppressant during the oxidative carbonylation process.We systematically investigated the explosion-suppressing efficacy of CO_(2) in flammable gas mixtures(CO/O_(2),C_(2)H_(4)/CO/O_(2),and C_(2)H_(2)/CO/O_(2))across varying concentrations.Notably,the mixed gas stream from CO_(2)/H_(2)O co-electrolysis at an industrial-scale current densities of 400 mA/cm^(2),enabling direct utilization in oxidative double carbonylation reactions with exceptional compatibility and inherent safety.Extended applications were demonstrated through substrate scope expansion and gram-scale synthesis.This study establishes not only a safe protocol for oxidative carbonylation processes,but also opens an innovative pathway for sustainable CO_(2) valorization,including CO surrogate and explosion suppressant. 展开更多
关键词 Carbon dioxide ELECTROLYSIS Explosion suppressant Double Carbonylation Explosion limits ETHYLENE ACETYLENE
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部