Researchers have achieved notable advancements over the years in exploring ship damage and stability resulting from underwater explosions(UNDEX).However,numerous challenges and open questions remain in this field.In t...Researchers have achieved notable advancements over the years in exploring ship damage and stability resulting from underwater explosions(UNDEX).However,numerous challenges and open questions remain in this field.In this study,the research progress of UNDEX load is first reviewed,which covers the explosion load during the shock wave and bubble pulsation stages.Subsequently,the research progress of ship damage caused by UNDEX is reviewed from two aspects:contact explosion and noncontact explosion.Finally,the research progress of ship navigation stability caused by UNDEX is reviewed from three aspects:natural factors,ship’s internal factors,and explosion factors.Analysis reveals that most existing research has focused on the damage to displacement ships caused by UNDEX.Meanwhile,less attention has been paid to the damage and stability of non-displacement ships caused by UNDEX,which are worthy of discussion.展开更多
Gas explosions are a frequent hazard in underground confined spaces in the process of urban development.Liquid sedimentary layers,commonly present in these environments,have not been sufficiently studied in terms of t...Gas explosions are a frequent hazard in underground confined spaces in the process of urban development.Liquid sedimentary layers,commonly present in these environments,have not been sufficiently studied in terms of their impact on explosion dynamics.This study aims to investigate how gas-liquid two-phase environments in confined underground spaces affect the explosion characteristics of natural gas.To achieve this,experiments are conducted to examine the propagation of natural gas explosions in water and diesel layers,focusing on the influence of liquid properties and the liquid fullness degree(Lx)on explosion behavior.The results indicate that the presence of a liquid layer after the initial ignition stage significantly attenuates both the peak overpressure and the rise speed of pressure,in comparison to the natural gas conditions.During the subsequent explosive reaction,the evaporation and combustion of the diesel surface resulted in a distinct double-peak pressure rise profile in the diesel layer,with the second peak notably exceeding the first peak.Under conditions with a liquid sedimentary layer,the flame propagation velocities range from 6.53 to 34.1 m/s,while the overpressure peaks vary between 0.157 and 0.255 MPa.The explosion duration in both the water and diesel layer environments is approximately twice as long as that of the natural gas explosion,although the underlying mechanisms differ.In the diesel layer,the prolonged explosion time is attributed to the evaporation and combustion of the diesel,while in the water layer,the flame propagation velocity is significantly reduced.Under the experimental conditions,the maximum explosion energy reached 7.15×10~6J,corresponding to a TNT equivalent of 1.7.The peak overpressure surpassed the threshold for human fatality as defined by overpressure standards,posing a potential risk of damage to large steel-frame structures.The explosion shockwave in diesel layer conditions(L_(d)=0%,5%,7.5%,12.5%)and water layer(L_(w)=12.5%)conditions is observed to be sufficient to damage earthquake-resistant reinforced concrete.This study investigates the impact of sediment layer thickness and composition on gas explosions,and evaluates the associated explosion energy to assess human injuries and structural damage in underground environments.The findings of this study provide a scientific reference for urban underground safety.展开更多
The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic re...The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic response of reinforced concrete blast doors with four-sided restraints in confined space. Explosion tests with TNT charges ranging from 0.15 kg to 0.4 kg were conducted in a confined space,capturing overpressure loads and the dynamic response of the blast door. An internal explosion model incorporating the afterburning effect was developed using LS-DYNA software and validated against experimental data. The results reveal that the TNT afterburning effect amplifies both the initial peak overpressure and the quasi-static overpressure, resulting in increased deformation of the blast door.Within the 0.15-0.4 kg charge range, the initial overpressure peak and quasi-static overpressure increased by an average of 1.79 times and 2.21 times, respectively. Additionally, the afterburning effect enhanced the blast door's deflection by 177%. Compared to open-space scenarios, the cumulative deflection of the blast door due to repeated shock wave impacts is significantly greater in confined spaces. Furthermore, the quasi-static pressure arising from the structural constraints sustains the blast door's deflection at a high level.展开更多
Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.Thi...Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.This study investigates the blasting effects and underlying mechanisms of concrete frustums subjected to contact explosions,employing both numerical simulations and field tests.It focuses on the effects of top and side blasting,with particular emphasis on fracture modes,damage patterns,and fragment sizes,as well as the causes of different failure modes and the propagation of stress waves.The study also explores the blasting effects of detonating explosives at varying positions along the side and with different charge amounts.The results show that side-blasting leads to complete fragmentation,with tensile waves playing a significant role in creating extensive damage zones that propagate parallel to the frustum's outer surface,concentrating damage near the surface.During top-blasting,the upper half of the frustum undergoes fragmentation,while the lower half experiences cracking.Tensile waves propagate from the top to the bottom surface,forming larger blocks in regions with lower wave intensity.Three distinct damage zones within the frustum were identified,and a series of mathematical formulas were derived to describe the relationship between the maximum fragment size and charge mass.As the charge mass increased from 1.0 kg to 4.0 kg,the maximum fragment size decreased.Detonation at the center of the frustum's side resulted in the most severe fragmentation,with a 51.8%reduction in fragment size compared to other detonation positions.Finally,four broken modes were classified,each influenced by charge mass and explosive location.This study provides valuable insights for optimizing civil blasting operations and designing protective engineering structures.展开更多
Reinforced concrete(RC)slabs are the primary load-carrying member of underwater facilities.They can suffer severe local failures such as cratering,spalling,or breaching as a result of underwater close-in(UWCI)explosio...Reinforced concrete(RC)slabs are the primary load-carrying member of underwater facilities.They can suffer severe local failures such as cratering,spalling,or breaching as a result of underwater close-in(UWCI)explosions.In this study,we established a fully validated high-fidelity finite element analysis approach to precisely reproduce the local failures of RC slabs after a UWCI explosion.A recently proposed dynamic constitutive model is used to describe wet concrete.The effects of free water content on the material properties,including the tensile/compressive strength,elastic modulus,strain rate effect,failure strength surface,and equation of state,are comprehensively calibrated based on existing test data.The calibrated material parameters are then verified by a single-element test.A high-fidelity finite element analysis(FEA)approach of an RC slab subjected to a UWCI explosion is established using an arbitrary Lagrangian-Eulerian(ALE)algorithm.Simulating previous UWCI explosion tests on RC orifice targets and underwater contact explosion tests on saturated concrete slabs showed that the established FEA approach could accurately reproduce the pressure-time history in water and damage patterns,including the cracking,cratering,and spalling,of the RC orifice target and saturated concrete slab.Furthermore,parametric studies conducted by simulating an RC slab subjected to a UWCI explosion showed that:(i)the local failure of an RC slab enlarges with increased charge weight,reduced standoff distance,and reduced structural thickness;(ii)compared to a water-backed RC slab,an air-backed RC slab exhibits much more obvious local and structural failure.Lastly,to aid the anti-explosion design of relevant underwater facilities,based on over 90 simulation cases empirical formulae are summarized to predict local failure modes,i.e.,no spall,spall,and breach,of water-and air-backed RC slabs subjected to a UWCI explosion.展开更多
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea...Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.展开更多
As an explosion control measure, rock dusting has been used in underground coal mines in many major coal producing countries with different standards. The effectiveness of the rock dust in reducing explosion intensity...As an explosion control measure, rock dusting has been used in underground coal mines in many major coal producing countries with different standards. The effectiveness of the rock dust in reducing explosion intensity has been proven by historic events and laboratory experiments. The main functions of rock dust in controlling mine explosions (i.e., isolator, physical heat sink and chemical energy absorber) have been quantitatively studied and results are presented in this paper.展开更多
Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the ...Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the effort to develop better technologies to safeguard mines, the use of active barrier systems was investigated at Kloppersbos in South Africa. The system is designed to meet the requirements of the European Standard (EN 14591-4 2007) as well as the Mine Safety Standardisation in the Ministry of Coal Industry, Coal Industrial 1 Standard of the Peoples Republic of China (MT 694-1997). From the tests conducted, it can be concluded that the ExploSpot System was successful in stopping flame propagation for both methane and methane and coal dust hybrid explosions when ammonium phosphate powder was used as the suppression material. The use of this barrier will provide coal mine management with an additional explosion control close to the point of ignition and may find application within longwall faces further protecting mines against the risk of an explosion propagating throughout a mine.展开更多
Most, if not all longwall gob areas accumulate explosive methane-air mixtures that pose a deadly hazard to miners. Numerous mine explosions have originated from explosive gas zones(EGZs) in the longwall gob. Since 201...Most, if not all longwall gob areas accumulate explosive methane-air mixtures that pose a deadly hazard to miners. Numerous mine explosions have originated from explosive gas zones(EGZs) in the longwall gob. Since 2010, researchers at the Colorado School of Mines(CSM) have studied EGZ formation in longwall gobs under two long-term research projects funded by the National Institute for Occupational Safety and Health. Researchers used computational fluid dynamics along with in-mine measurements. For the first time, they demonstrated that EGZs form along the fringe areas between the methane-rich atmospheres and the fresh air ventilated areas along the working face and present an explosion and fire hazard to mine workers. In this study, researchers found that, for progressively sealed gobs, a targeted injection of nitrogen from the headgate and tailgate, along with a back return ventilation arrangement, will create a dynamic seal of nitrogen that effectively separates the methane zone from the face air and eliminates the EGZs to prevent explosions. Using this form of nitrogen injection to create dynamic seals should be a consideration for all longwall operators.展开更多
In this study,we investigated the motion,shape,and delayed radiation intensity of a radioactive cloud by establishing a volume-source model of delayed radiation after high-altitude nuclear explosions.Then,the spatial ...In this study,we investigated the motion,shape,and delayed radiation intensity of a radioactive cloud by establishing a volume-source model of delayed radiation after high-altitude nuclear explosions.Then,the spatial distribution of electron number density at different moments on the north side of the explosion point generated by delayed γ-rays and delayed β-rays from the radioactive cloud under the influence of the geomagnetic field was calculated by solving chemical reaction kinetics equations.The impact of radio communication in the different frequency bands on the process of atmospheric ionization was also studied.The numerical results of the high-altitude nuclear explosion (120 km high and with a 1 megaton equivalent at 40°N latitude) indicated that the peak of electron number density ionized delayed γ-rays is located at a height of approximately 100 km and that of electron number density ionized delayed β-rays is about 90 km high.After 1 min of explosion,the radio communication in the medium frequency (MF) and high-frequency (HF)bands was completely interrupted,and the energy attenuation of the radio wave in the very high-frequency (VHF)band was extremely high.Five minutes later,the VHF radio communication was basically restored,but the energy attenuation in the HF band was still high.After 30 min,theVHF radio communication returned to normal,but its influence on the HF and MF radio communication continued.展开更多
Based on the spherical cavity expansion theory in the elastic half space,the ground surface movement characteristics of shallowly buried explosions are analyzed.The results show that the induced seismic wave is a long...Based on the spherical cavity expansion theory in the elastic half space,the ground surface movement characteristics of shallowly buried explosions are analyzed.The results show that the induced seismic wave is a longitudinal wave in the near zone and a Rayleigh wave in the far zone.The maximum displacement(velocity) of the longitudinal wave and the Rayleigh wave are inversely proportional to the scaled distance,and can be described by exponential function with exponents equal to 1.4 and 0.5,respectively.The vibration frequencies of the waves have almost no change.The vibration frequency of the longitudinal wave approximates the natural vibration frequency of the cavity in the broken area,and the vibration frequency of the Rayleigh wave is about half that of the longitudinal wave.On the same reduced buried depth and reduced distance,the particle displacement is directly proportional to the product of the boundary loading and cavity radius,and is inversely proportional to the transversal wave velocity.Meanwhile,the particle velocity is directly proportional to the boundary loading and inversely proportional to the wave velocity ratio.In the far zone,the buried depth of the explosive only has a slight effect on the longitudinal wave,but has a larger effect on the Rayleigh wave.展开更多
Coal dust explosion conducted in a 200 mm diameter, 29.6 m long tube is presented in this paper. 40 dust dispersion system sets were used to disperse coal dust into the tube. A constant temperature hot wire anemometer...Coal dust explosion conducted in a 200 mm diameter, 29.6 m long tube is presented in this paper. 40 dust dispersion system sets were used to disperse coal dust into the tube. A constant temperature hot wire anemometer was used to measure the gas velocity during the dispersion process. Kistler piezoelectric pressure sensors were used to measure the propagation of the pressure wave during the explosion process. The overpres- sure of coal dust explosion in the tube was 70 kPa and the velocity of pressure wave propagating along the tube was 370 m/s approximately. The minimum concentration for dust explosion propagating along the tube was 100 g/m3. The effects of two kinds of suppressing agents used to suppress the coal dust explosion were studled.展开更多
In view of the environmental and safety risks of hazardous chemical explosions in chemical enterprises,the fault tree analysis was used to establish a fault tree model of hazardous chemical explosions and comprehensiv...In view of the environmental and safety risks of hazardous chemical explosions in chemical enterprises,the fault tree analysis was used to establish a fault tree model of hazardous chemical explosions and comprehensively analyze the possibility of the explosions.The 34 basic events that caused hazardous chemical explosions were expounded,and the minimum cut and path sets were obtained.The structure importance of basic events were calculated.According to the minimum path sets,the basic events when the accident does not occur were determined,and combined with the sequence of structure importance,the preventive measures for hazardous chemical explosion accidents were proposed.The fault tree model intuitively clarified the correlation between the direct causes of hazardous chemical explosion accidents,and proposed directions for effectively reducing the probability of hazardous chemical explosion accidents in the chemical industry.展开更多
Firedamp and coal dust explosion constitute a lion’s share in mine accidents in a global mining scenario.This paper reports a list of mine explosion disasters since last two decades,a critical review of the different...Firedamp and coal dust explosion constitute a lion’s share in mine accidents in a global mining scenario.This paper reports a list of mine explosion disasters since last two decades,a critical review of the different prevention and constructive measures,and its recent development to avoid firedamp and coal dust explosion.Preventive legislation in core coal-producing countries,viz.China,USA,Australia,South Africa,and India related to firedamp and coal dust explosion are critically analysed.Accidents occurred due to explosion after Nationalisation of Coal Mines(1973)in India are listed.Prevention and constructive measures adopted in India are critically analysed with respect to the global mining scenario.Measures like methane credit concept,classification of mines/seams with respect to explosion risk zone,deflagration index;installation of automatic fire warning devices,canopy air curtain technology,explosion-prevention measures,such as fire-retardant materials,inhibitors,extinguishing agent,dust suppressor,and active explosion barrier are discussed in detail to avoid explosion and thereby adhering to zero accident policy due to coal mine explosion.展开更多
Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite elemen...Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite element model of multi-sources FAE explosion is established to simulate the process of multiple shockwaves propagation and interaction.The model is verified with the experimental data of a fourfoldsource FAE explosion,with the total fuel mass of 340 kg.Simulation results show that the overpressure fields of multi-sources FAE explosions are different from that of the single-source.In the case of multisources,the overpressure fields are influenced significantly by source scattering distance and source number.Subsequently,damage ranges of overpressure under three different levels are calculated.Within a suitable source scattering distance,the damage range of multi-sources situation is greater than that of the single-source,under the same amount of total fuel mass.This research provides a basis for personnel shockwave protection from multi-sources FAE explosion.展开更多
AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a qua...AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a quantitative description of dependence of flame propagation speed and explosion overpressure on obstacles number, blockage ratio and interval distance. Computational results indicate that the obstacles play a significant role in determining the flame transmission speed and explosion overpressure in gas explosions. With the increase of blockage ratio, the explosion overpressure gradually rises. Nevertheless, the flame speed does not always increase along with increasing blockage ratio, but subsequently begins to decrease as the blockage ratio increases to some extend. Also, the interval distance between obstacles strongly influences flame behavior and explosion overpressure. When the obstacle interval distance is equal to inner diameter of the tube, the average flame speed in the obstacle zone and the peak overpressure in tube all reach maximum values.展开更多
Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock se...Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock security.In this study,the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models.Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m,under different explosive quantities(0.025 kg-1.6 kg),stand-off distances(0.0 m-7.0 m),and detonation depths(0.25 m-2.0 m).The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure,acceleration,strain,and displacement.Then,the load distribution characteristics,time history of test data,and damage models related to present conditions were obtained and discussed.Three damage models,including bending failure,bending-shear failure and punching failure,were identified.In addition,the experie nce model of shock wave loads on the surface of a RC column was proposed for engineering application.展开更多
The seismoacoustic analysis method has broad potential applications to source parameter estimation for near-surface explosion events such as industrial explosions and terrorist attacks.In this study,current models wer...The seismoacoustic analysis method has broad potential applications to source parameter estimation for near-surface explosion events such as industrial explosions and terrorist attacks.In this study,current models were improved by modifying the acoustic model and adopting the Bayesian Markov-chain-Monte-Carlo inversion method.The source parameters of near-surface small-yield chemical explosions were analyzed via the improved seismoacoustic analysis model and by the estimation accuracy of seismoacoustic joint inversion.Estimation and analysis results showed that the improved seismoacoustic analysis model considered ground shock coupling and the impact of explosion products ejecting from the surface so that the improved acoustic impulse relation was more consistent with the measured data than the Ford impulse relation.It is suitable for deep-burial,shallow-burial,and near-surface aerial explosions.Furthermore,trade-off relationships were declined through the application of the improved model to source parameter inversion for near-surface small-yield chemical explosions,and source parameter estimation accuracy was improved.展开更多
Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea w...Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea with different formulations were processed, and a series of experiments were carried out on the specimens with gas explosion devices. The results showed that the conventional mechanical properties of different types of polyureas had their own advantages. Based on the gas explosion overpressure criterion, the blast resistances of reinforced plates were quantitatively evaluated,and the best polyurea was selected to guide the formulation design. The three typical failure modes of polyurea-reinforced FRCBs were flexural, shear, and flexural-shear failure. Dynamic thermodynamics and shock wave spectral analysis revealed that the polyurea did not undergo a glass transition in the gas explosion tests but retained its elastic properties, allowing it to effectively wrap the fragments formed by the brittle substrates.展开更多
This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)n) in a gas jet subjected to intense femtoseeond laser pulses (170 mJ, 70 fs) have led ...This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)n) in a gas jet subjected to intense femtoseeond laser pulses (170 mJ, 70 fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average size of about 5 nm in radius and the laser intensity used was 3 × 10^17 W/cm^2.The measured maximum and average energies of deuterons produced in the laser-cluster interaction were 60 and 13.5 keV, respectively. Prom DD collisions of energetic deuterons, a yield of 2.5(±0.4) × 10^4 fusion neutrons of 2.45 MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5 × 10^5 per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.展开更多
基金Supported by the Key R&D Program of Heilongjiang Province(Grant No.JD22A024)the Science Fund for Excellent Youth Foundation of Heilongjiang Province of China(Grant No.YQ2021E010).
文摘Researchers have achieved notable advancements over the years in exploring ship damage and stability resulting from underwater explosions(UNDEX).However,numerous challenges and open questions remain in this field.In this study,the research progress of UNDEX load is first reviewed,which covers the explosion load during the shock wave and bubble pulsation stages.Subsequently,the research progress of ship damage caused by UNDEX is reviewed from two aspects:contact explosion and noncontact explosion.Finally,the research progress of ship navigation stability caused by UNDEX is reviewed from three aspects:natural factors,ship’s internal factors,and explosion factors.Analysis reveals that most existing research has focused on the damage to displacement ships caused by UNDEX.Meanwhile,less attention has been paid to the damage and stability of non-displacement ships caused by UNDEX,which are worthy of discussion.
基金supported by the National Natural Science Foundation of China(Project Approval Number:52404270)Postdoctoral Innovative Talent Support Program(BX20230427)+2 种基金Postdoctoral Surface Fund Grants(2023M743874)Research Start-up Fund of China University of Petroleum(Beijing)(2462023XKBH017)Fundamental Research Project Grant of China Academy of Safety Science and Technology(2023JBKY07)。
文摘Gas explosions are a frequent hazard in underground confined spaces in the process of urban development.Liquid sedimentary layers,commonly present in these environments,have not been sufficiently studied in terms of their impact on explosion dynamics.This study aims to investigate how gas-liquid two-phase environments in confined underground spaces affect the explosion characteristics of natural gas.To achieve this,experiments are conducted to examine the propagation of natural gas explosions in water and diesel layers,focusing on the influence of liquid properties and the liquid fullness degree(Lx)on explosion behavior.The results indicate that the presence of a liquid layer after the initial ignition stage significantly attenuates both the peak overpressure and the rise speed of pressure,in comparison to the natural gas conditions.During the subsequent explosive reaction,the evaporation and combustion of the diesel surface resulted in a distinct double-peak pressure rise profile in the diesel layer,with the second peak notably exceeding the first peak.Under conditions with a liquid sedimentary layer,the flame propagation velocities range from 6.53 to 34.1 m/s,while the overpressure peaks vary between 0.157 and 0.255 MPa.The explosion duration in both the water and diesel layer environments is approximately twice as long as that of the natural gas explosion,although the underlying mechanisms differ.In the diesel layer,the prolonged explosion time is attributed to the evaporation and combustion of the diesel,while in the water layer,the flame propagation velocity is significantly reduced.Under the experimental conditions,the maximum explosion energy reached 7.15×10~6J,corresponding to a TNT equivalent of 1.7.The peak overpressure surpassed the threshold for human fatality as defined by overpressure standards,posing a potential risk of damage to large steel-frame structures.The explosion shockwave in diesel layer conditions(L_(d)=0%,5%,7.5%,12.5%)and water layer(L_(w)=12.5%)conditions is observed to be sufficient to damage earthquake-resistant reinforced concrete.This study investigates the impact of sediment layer thickness and composition on gas explosions,and evaluates the associated explosion energy to assess human injuries and structural damage in underground environments.The findings of this study provide a scientific reference for urban underground safety.
基金financially supported by the National Natural Science Foundation of China (Grant No. 52278504)the Natural Science Foundation of Jiangsu Province (Grant No. BK20220141)。
文摘The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic response of reinforced concrete blast doors with four-sided restraints in confined space. Explosion tests with TNT charges ranging from 0.15 kg to 0.4 kg were conducted in a confined space,capturing overpressure loads and the dynamic response of the blast door. An internal explosion model incorporating the afterburning effect was developed using LS-DYNA software and validated against experimental data. The results reveal that the TNT afterburning effect amplifies both the initial peak overpressure and the quasi-static overpressure, resulting in increased deformation of the blast door.Within the 0.15-0.4 kg charge range, the initial overpressure peak and quasi-static overpressure increased by an average of 1.79 times and 2.21 times, respectively. Additionally, the afterburning effect enhanced the blast door's deflection by 177%. Compared to open-space scenarios, the cumulative deflection of the blast door due to repeated shock wave impacts is significantly greater in confined spaces. Furthermore, the quasi-static pressure arising from the structural constraints sustains the blast door's deflection at a high level.
基金the support provided by the Technology Innovation Project (Grant No. KYGYZB002201) for the research work
文摘Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.This study investigates the blasting effects and underlying mechanisms of concrete frustums subjected to contact explosions,employing both numerical simulations and field tests.It focuses on the effects of top and side blasting,with particular emphasis on fracture modes,damage patterns,and fragment sizes,as well as the causes of different failure modes and the propagation of stress waves.The study also explores the blasting effects of detonating explosives at varying positions along the side and with different charge amounts.The results show that side-blasting leads to complete fragmentation,with tensile waves playing a significant role in creating extensive damage zones that propagate parallel to the frustum's outer surface,concentrating damage near the surface.During top-blasting,the upper half of the frustum undergoes fragmentation,while the lower half experiences cracking.Tensile waves propagate from the top to the bottom surface,forming larger blocks in regions with lower wave intensity.Three distinct damage zones within the frustum were identified,and a series of mathematical formulas were derived to describe the relationship between the maximum fragment size and charge mass.As the charge mass increased from 1.0 kg to 4.0 kg,the maximum fragment size decreased.Detonation at the center of the frustum's side resulted in the most severe fragmentation,with a 51.8%reduction in fragment size compared to other detonation positions.Finally,four broken modes were classified,each influenced by charge mass and explosive location.This study provides valuable insights for optimizing civil blasting operations and designing protective engineering structures.
基金supported by the National Natural Science Foundation of China(No.52208500).
文摘Reinforced concrete(RC)slabs are the primary load-carrying member of underwater facilities.They can suffer severe local failures such as cratering,spalling,or breaching as a result of underwater close-in(UWCI)explosions.In this study,we established a fully validated high-fidelity finite element analysis approach to precisely reproduce the local failures of RC slabs after a UWCI explosion.A recently proposed dynamic constitutive model is used to describe wet concrete.The effects of free water content on the material properties,including the tensile/compressive strength,elastic modulus,strain rate effect,failure strength surface,and equation of state,are comprehensively calibrated based on existing test data.The calibrated material parameters are then verified by a single-element test.A high-fidelity finite element analysis(FEA)approach of an RC slab subjected to a UWCI explosion is established using an arbitrary Lagrangian-Eulerian(ALE)algorithm.Simulating previous UWCI explosion tests on RC orifice targets and underwater contact explosion tests on saturated concrete slabs showed that the established FEA approach could accurately reproduce the pressure-time history in water and damage patterns,including the cracking,cratering,and spalling,of the RC orifice target and saturated concrete slab.Furthermore,parametric studies conducted by simulating an RC slab subjected to a UWCI explosion showed that:(i)the local failure of an RC slab enlarges with increased charge weight,reduced standoff distance,and reduced structural thickness;(ii)compared to a water-backed RC slab,an air-backed RC slab exhibits much more obvious local and structural failure.Lastly,to aid the anti-explosion design of relevant underwater facilities,based on over 90 simulation cases empirical formulae are summarized to predict local failure modes,i.e.,no spall,spall,and breach,of water-and air-backed RC slabs subjected to a UWCI explosion.
文摘Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.
文摘As an explosion control measure, rock dusting has been used in underground coal mines in many major coal producing countries with different standards. The effectiveness of the rock dust in reducing explosion intensity has been proven by historic events and laboratory experiments. The main functions of rock dust in controlling mine explosions (i.e., isolator, physical heat sink and chemical energy absorber) have been quantitatively studied and results are presented in this paper.
文摘Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the effort to develop better technologies to safeguard mines, the use of active barrier systems was investigated at Kloppersbos in South Africa. The system is designed to meet the requirements of the European Standard (EN 14591-4 2007) as well as the Mine Safety Standardisation in the Ministry of Coal Industry, Coal Industrial 1 Standard of the Peoples Republic of China (MT 694-1997). From the tests conducted, it can be concluded that the ExploSpot System was successful in stopping flame propagation for both methane and methane and coal dust hybrid explosions when ammonium phosphate powder was used as the suppression material. The use of this barrier will provide coal mine management with an additional explosion control close to the point of ignition and may find application within longwall faces further protecting mines against the risk of an explosion propagating throughout a mine.
基金provided by the National Institute for Occupational Safety and Health,NIOSH(No.211-2014-60050)
文摘Most, if not all longwall gob areas accumulate explosive methane-air mixtures that pose a deadly hazard to miners. Numerous mine explosions have originated from explosive gas zones(EGZs) in the longwall gob. Since 2010, researchers at the Colorado School of Mines(CSM) have studied EGZ formation in longwall gobs under two long-term research projects funded by the National Institute for Occupational Safety and Health. Researchers used computational fluid dynamics along with in-mine measurements. For the first time, they demonstrated that EGZs form along the fringe areas between the methane-rich atmospheres and the fresh air ventilated areas along the working face and present an explosion and fire hazard to mine workers. In this study, researchers found that, for progressively sealed gobs, a targeted injection of nitrogen from the headgate and tailgate, along with a back return ventilation arrangement, will create a dynamic seal of nitrogen that effectively separates the methane zone from the face air and eliminates the EGZs to prevent explosions. Using this form of nitrogen injection to create dynamic seals should be a consideration for all longwall operators.
文摘In this study,we investigated the motion,shape,and delayed radiation intensity of a radioactive cloud by establishing a volume-source model of delayed radiation after high-altitude nuclear explosions.Then,the spatial distribution of electron number density at different moments on the north side of the explosion point generated by delayed γ-rays and delayed β-rays from the radioactive cloud under the influence of the geomagnetic field was calculated by solving chemical reaction kinetics equations.The impact of radio communication in the different frequency bands on the process of atmospheric ionization was also studied.The numerical results of the high-altitude nuclear explosion (120 km high and with a 1 megaton equivalent at 40°N latitude) indicated that the peak of electron number density ionized delayed γ-rays is located at a height of approximately 100 km and that of electron number density ionized delayed β-rays is about 90 km high.After 1 min of explosion,the radio communication in the medium frequency (MF) and high-frequency (HF)bands was completely interrupted,and the energy attenuation of the radio wave in the very high-frequency (VHF)band was extremely high.Five minutes later,the VHF radio communication was basically restored,but the energy attenuation in the HF band was still high.After 30 min,theVHF radio communication returned to normal,but its influence on the HF and MF radio communication continued.
基金Science Fund for Creative Research Group of the National Natural Science Foundation of China under Grant No.51021001China Postdoctoral Science Foundation under Grant No.2013M541675National Natural Science Foundation of China under Grant No.51309233
文摘Based on the spherical cavity expansion theory in the elastic half space,the ground surface movement characteristics of shallowly buried explosions are analyzed.The results show that the induced seismic wave is a longitudinal wave in the near zone and a Rayleigh wave in the far zone.The maximum displacement(velocity) of the longitudinal wave and the Rayleigh wave are inversely proportional to the scaled distance,and can be described by exponential function with exponents equal to 1.4 and 0.5,respectively.The vibration frequencies of the waves have almost no change.The vibration frequency of the longitudinal wave approximates the natural vibration frequency of the cavity in the broken area,and the vibration frequency of the Rayleigh wave is about half that of the longitudinal wave.On the same reduced buried depth and reduced distance,the particle displacement is directly proportional to the product of the boundary loading and cavity radius,and is inversely proportional to the transversal wave velocity.Meanwhile,the particle velocity is directly proportional to the boundary loading and inversely proportional to the wave velocity ratio.In the far zone,the buried depth of the explosive only has a slight effect on the longitudinal wave,but has a larger effect on the Rayleigh wave.
基金Sponsored by the National Natural Science Foundation of China (10772032)the State Key Laboratory of Explosion Science and Technology Foundation (ZDKT08-2-6,YBKT09-1)
文摘Coal dust explosion conducted in a 200 mm diameter, 29.6 m long tube is presented in this paper. 40 dust dispersion system sets were used to disperse coal dust into the tube. A constant temperature hot wire anemometer was used to measure the gas velocity during the dispersion process. Kistler piezoelectric pressure sensors were used to measure the propagation of the pressure wave during the explosion process. The overpres- sure of coal dust explosion in the tube was 70 kPa and the velocity of pressure wave propagating along the tube was 370 m/s approximately. The minimum concentration for dust explosion propagating along the tube was 100 g/m3. The effects of two kinds of suppressing agents used to suppress the coal dust explosion were studled.
基金Supported by the Science and Technology Plan Project of Liaoning Province,China(2019JH8/10300102)。
文摘In view of the environmental and safety risks of hazardous chemical explosions in chemical enterprises,the fault tree analysis was used to establish a fault tree model of hazardous chemical explosions and comprehensively analyze the possibility of the explosions.The 34 basic events that caused hazardous chemical explosions were expounded,and the minimum cut and path sets were obtained.The structure importance of basic events were calculated.According to the minimum path sets,the basic events when the accident does not occur were determined,and combined with the sequence of structure importance,the preventive measures for hazardous chemical explosion accidents were proposed.The fault tree model intuitively clarified the correlation between the direct causes of hazardous chemical explosion accidents,and proposed directions for effectively reducing the probability of hazardous chemical explosion accidents in the chemical industry.
基金The authors are grateful to the Ministry of Coal,Government of India(No.CIL/R&D/01/60/2016)for financial support。
文摘Firedamp and coal dust explosion constitute a lion’s share in mine accidents in a global mining scenario.This paper reports a list of mine explosion disasters since last two decades,a critical review of the different prevention and constructive measures,and its recent development to avoid firedamp and coal dust explosion.Preventive legislation in core coal-producing countries,viz.China,USA,Australia,South Africa,and India related to firedamp and coal dust explosion are critically analysed.Accidents occurred due to explosion after Nationalisation of Coal Mines(1973)in India are listed.Prevention and constructive measures adopted in India are critically analysed with respect to the global mining scenario.Measures like methane credit concept,classification of mines/seams with respect to explosion risk zone,deflagration index;installation of automatic fire warning devices,canopy air curtain technology,explosion-prevention measures,such as fire-retardant materials,inhibitors,extinguishing agent,dust suppressor,and active explosion barrier are discussed in detail to avoid explosion and thereby adhering to zero accident policy due to coal mine explosion.
基金The authors would like to acknowledge the China Postdoctoral Science Foundation(Grant No.2019M660488)to provide fund for this work.
文摘Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite element model of multi-sources FAE explosion is established to simulate the process of multiple shockwaves propagation and interaction.The model is verified with the experimental data of a fourfoldsource FAE explosion,with the total fuel mass of 340 kg.Simulation results show that the overpressure fields of multi-sources FAE explosions are different from that of the single-source.In the case of multisources,the overpressure fields are influenced significantly by source scattering distance and source number.Subsequently,damage ranges of overpressure under three different levels are calculated.Within a suitable source scattering distance,the damage range of multi-sources situation is greater than that of the single-source,under the same amount of total fuel mass.This research provides a basis for personnel shockwave protection from multi-sources FAE explosion.
文摘AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a quantitative description of dependence of flame propagation speed and explosion overpressure on obstacles number, blockage ratio and interval distance. Computational results indicate that the obstacles play a significant role in determining the flame transmission speed and explosion overpressure in gas explosions. With the increase of blockage ratio, the explosion overpressure gradually rises. Nevertheless, the flame speed does not always increase along with increasing blockage ratio, but subsequently begins to decrease as the blockage ratio increases to some extend. Also, the interval distance between obstacles strongly influences flame behavior and explosion overpressure. When the obstacle interval distance is equal to inner diameter of the tube, the average flame speed in the obstacle zone and the peak overpressure in tube all reach maximum values.
基金funded by the National Natural Science Foundation of China(Grant Nos.51578543)。
文摘Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock security.In this study,the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models.Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m,under different explosive quantities(0.025 kg-1.6 kg),stand-off distances(0.0 m-7.0 m),and detonation depths(0.25 m-2.0 m).The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure,acceleration,strain,and displacement.Then,the load distribution characteristics,time history of test data,and damage models related to present conditions were obtained and discussed.Three damage models,including bending failure,bending-shear failure and punching failure,were identified.In addition,the experie nce model of shock wave loads on the surface of a RC column was proposed for engineering application.
基金the National Natural Science Foundation of China(No.12072290).
文摘The seismoacoustic analysis method has broad potential applications to source parameter estimation for near-surface explosion events such as industrial explosions and terrorist attacks.In this study,current models were improved by modifying the acoustic model and adopting the Bayesian Markov-chain-Monte-Carlo inversion method.The source parameters of near-surface small-yield chemical explosions were analyzed via the improved seismoacoustic analysis model and by the estimation accuracy of seismoacoustic joint inversion.Estimation and analysis results showed that the improved seismoacoustic analysis model considered ground shock coupling and the impact of explosion products ejecting from the surface so that the improved acoustic impulse relation was more consistent with the measured data than the Ford impulse relation.It is suitable for deep-burial,shallow-burial,and near-surface aerial explosions.Furthermore,trade-off relationships were declined through the application of the improved model to source parameter inversion for near-surface small-yield chemical explosions,and source parameter estimation accuracy was improved.
基金funded by National Natural Science Foundation of China(No.12002392).
文摘Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea with different formulations were processed, and a series of experiments were carried out on the specimens with gas explosion devices. The results showed that the conventional mechanical properties of different types of polyureas had their own advantages. Based on the gas explosion overpressure criterion, the blast resistances of reinforced plates were quantitatively evaluated,and the best polyurea was selected to guide the formulation design. The three typical failure modes of polyurea-reinforced FRCBs were flexural, shear, and flexural-shear failure. Dynamic thermodynamics and shock wave spectral analysis revealed that the polyurea did not undergo a glass transition in the gas explosion tests but retained its elastic properties, allowing it to effectively wrap the fragments formed by the brittle substrates.
基金supported by the National Basic Research Program of China (Grant No 2006CB806000)the National Natural Science Foundation of China (Grant No 10535070)
文摘This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)n) in a gas jet subjected to intense femtoseeond laser pulses (170 mJ, 70 fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average size of about 5 nm in radius and the laser intensity used was 3 × 10^17 W/cm^2.The measured maximum and average energies of deuterons produced in the laser-cluster interaction were 60 and 13.5 keV, respectively. Prom DD collisions of energetic deuterons, a yield of 2.5(±0.4) × 10^4 fusion neutrons of 2.45 MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5 × 10^5 per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.