期刊文献+
共找到1,289篇文章
< 1 2 65 >
每页显示 20 50 100
Basic theory of dust explosion of energetic materials: A review
1
作者 Mengli Yin Chunyan Wang +4 位作者 Haoyang Guo Yuhuai Shi Shengnan Shi Wenhui Wang Xiong Cao 《Defence Technology(防务技术)》 2025年第6期48-66,共19页
Due to the presence of nitro groups, the dust generated during the production and utilization of energetic materials may potentially lead to dust explosion even under low-oxygen or anaerobic conditions.Considering the... Due to the presence of nitro groups, the dust generated during the production and utilization of energetic materials may potentially lead to dust explosion even under low-oxygen or anaerobic conditions.Considering the high energy density of energetic materials, dust explosion can cause serious production safety accidents. Therefore, it is necessary to understand the dust explosion characteristics of energetic materials and the mechanism of dust explosion. According to the literature review, among various influencing factors, the physical and chemical properties of dust are the decisive factors affecting the explosion characteristics of dust. In addition to experimental studies, numerical simulation is another important tool. However, it is subjected to certain limitations. Moreover, it is essential but challenging to fully understand the underlying mechanism. In addition, given the safety hazards posed by dust explosion, explosion suppression has attracted extensive attention for research. Depending on the medium used, there are different forms of suppression, including powder explosion suppression, water spray explosion suppression, inert gas explosion suppression, porous material explosion suppression, and vacuum chamber explosion suppression. As for the selection of explosion suppression agent, consideration must be given to the characteristics of the material. Furthermore, the above research has laid a foundation for discussing the future progress in studying dust explosion of energetic materials, with nano dust and the constraints of existing technology as the focal point. 展开更多
关键词 Energetic dust explosion Influencing factors CFD simulation explosion mechanism explosion suppression Nano dust
在线阅读 下载PDF
SSA-LSTM-Multi-Head Attention Modelling Approach for Prediction of Coal Dust Maximum Explosion Pressure Based on the Synergistic Effect of Particle Size and Concentration
2
作者 Yongli Liu Weihao Li +1 位作者 Haitao Wang Taoren Du 《Computer Modeling in Engineering & Sciences》 2025年第5期2261-2286,共26页
Coal dust explosions are severe safety accidents in coal mine production,posing significant threats to life and property.Predicting the maximum explosion pressure(Pm)of coal dust using deep learning models can effecti... Coal dust explosions are severe safety accidents in coal mine production,posing significant threats to life and property.Predicting the maximum explosion pressure(Pm)of coal dust using deep learning models can effectively assess potential risks and provide a scientific basis for preventing coal dust explosions.In this study,a 20-L explosion sphere apparatus was used to test the maximum explosion pressure of coal dust under seven different particle sizes and ten mass concentrations(Cdust),resulting in a dataset of 70 experimental groups.Through Spearman correlation analysis and random forest feature selection methods,particle size(D_(10),D_(20),D_(50))and mass concentration(Cdust)were identified as critical feature parameters from the ten initial parameters of the coal dust samples.Based on this,a hybrid Long Short-Term Memory(LSTM)network model incorporating a Multi-Head Attention Mechanism and the Sparrow Search Algorithm(SSA)was proposed to predict the maximum explosion pressure of coal dust.The results demonstrate that the SSA-LSTM-Multi-Head Attention model excels in predicting the maximum explosion pressure of coal dust.The four evaluation metrics indicate that the model achieved a coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute percentage error(MAPE),and mean absolute error(MAE)of 0.9841,0.0030,0.0074,and 0.0049,respectively,in the training set.In the testing set,these values were 0.9743,0.0087,0.0108,and 0.0069,respectively.Compared to artificial neural networks(ANN),random forest(RF),support vector machines(SVM),particle swarm optimized-SVM(PSO-SVM)neural networks,and the traditional single-model LSTM,the SSA-LSTM-Multi-Head Attention model demonstrated superior generalization capability and prediction accuracy.The findings of this study not only advance the application of deep learning in coal dust explosion prediction but also provide robust technical support for the prevention and risk assessment of coal dust explosions. 展开更多
关键词 Coal dust explosion deep learning maximum explosion pressure predictive model SSA-LSTM multi-head attention mechanism
在线阅读 下载PDF
Proportional effects of RDX/Al mixtures on dust explosion characteristics,ame behavior,and explosion mechanism
3
作者 Mengli Yin Haoyang Guo +4 位作者 Erhai An Kangjie Xie Zijia Wang Tengyue Song Xiong Cao 《Defence Technology(防务技术)》 2025年第10期71-83,共13页
RDX/Al mixtures are widely utilized in energetic materials,yet their hybrid dust generated during production and application poses potential explosion hazards.Moreover,the synergistic explosion mechanisms remain poorl... RDX/Al mixtures are widely utilized in energetic materials,yet their hybrid dust generated during production and application poses potential explosion hazards.Moreover,the synergistic explosion mechanisms remain poorly understood,particularly at varying dust concentrations.This study systematically investigates the effects of different aluminum powder mass percentages and dust concentrations(300 g/m^(3),600 g/m^(3),900 g/m^(3))on RDX dust explosion severity,flame propagation behavior,and gaseous products.The results indicate that the maximum explosion pressure peaks at 35%RDX,65%RDX,and 80%RDX at 300 g/m^(3),600 g/m^(3),and 900 g/m^(3),respectively.Concurrently,the time for the flame to propagate to the wall(t1)reaches minimum values of 34.8 ms,25.66 ms,and 23.93 ms.The maximum rate of pressure rise is observed for pure RDX at 900 g/m^(3).Aluminum powder enhances flame propagation velocity and combustion duration,as validated by the flame propagation system.Overall,the concentrations of carbon oxides(CO+CO_(2))decrease significantly with increasing aluminum mass percentage.At 20%RDX,the concentrations decreased by 51.64%,72.31%,and 79.55%compared to pure RDX at 300 g/m^(3),600 g/m^(3),and 900 g/m^(3),respectively.Notably,N_(2)O concentration only at 300 g/m^(3)showed such a trend.It rises first and then falls at 35%RDX at 600 g/m^(3)and 900 g/m^(3).These findings elucidate the synergistic explosion mechanisms and provide critical guidelines for safe production and handling. 展开更多
关键词 Dust explosion RDX/Al mixtures explosion severity Flame propagation behavior Gaseous products
在线阅读 下载PDF
Research on the protection mechanism of methane explosion in underground space by flexible construction
4
作者 Xianqi Duan Yulong Duan +3 位作者 Zishuang Zhang Jun Long Yaqiao Yang Rui Lang 《Defence Technology(防务技术)》 2025年第4期169-183,共15页
Urban growth has promoted the use of underground spaces,where explosion accidents can be catastrophic.In this study,we investigated the effect of placing flexible construction in front of rigid obstacles on methane ex... Urban growth has promoted the use of underground spaces,where explosion accidents can be catastrophic.In this study,we investigated the effect of placing flexible construction in front of rigid obstacles on methane explosion protection by using an experimental platform and adjusting the blockage rate and spacing of the obstacles.It aims to reduce the risk of gas explosions in urban underground spaces.The results of the study show that the flame propagation peak speed and peak overpressure are reduced with the decrease in the blocking rate of the flexible obstacle when the blocking rate of the flexible obstacle is less than or equal to the blocking rate of the rigid obstacle,with the decrease in the spacing,the better the protection effect of the methane explosion.When the blockage rate of the flexible obstacle is greater than the blockage rate of the rigid obstacle and spacing is less than the height of the flexible obstacle,rigid and flexible obstacles are connected as a whole,increasing the strength of the explosion.This study can provide a theoretical basis and scientific guidance for optimizing rigid and flexible object hybrid layouts and methane explosion protection technology in urban underground spaces. 展开更多
关键词 explosion protection Flexible construction Urban underground space Methane explosions
在线阅读 下载PDF
Research on the hazards of gas leakage and explosion in a full-scale residential building
5
作者 Chengjun Yue Li Chen +2 位作者 Zhan Li Bin Feng Ruizhi Xu 《Defence Technology(防务技术)》 2025年第1期168-181,共14页
The gas explosion in residential building has always been a highly concerned problem.Explosions in homogeneous mixtures have been extensively studied.However,mixtures are often inhomogeneous in the practical scenarios... The gas explosion in residential building has always been a highly concerned problem.Explosions in homogeneous mixtures have been extensively studied.However,mixtures are often inhomogeneous in the practical scenarios due to the differences in the densities of methane and air.In order to investigate the effects of gas explosions in inhomogeneous mixtures,experimental studies involving gas leakage and explosion are conducted in a full-scale residential building to reproduce the process of gas explosion.By fitting the dimensionless buoyancy as a function of dimensionless height and dimensionless time,a distribution model of gas in large-scale spaces is established,and the mechanism of inhomogeneous distribution of methane is also be revealed.Furthermore,the stratified reconstruction method(SRM)is introduced for efficiently setting up inhomogeneous concentration fields in FLACS.The simulation results highlight that for the internal overpressure,the distribution of methane has no effect on the first overpressure peak(ΔP1),while it significantly influences the subsequent overpressure peak(ΔP2),and the maximum difference between the overpressure of homogeneous and inhomogeneous distribution is174.3%.Moreover,the initial concentration distribution also has a certain impact on the external overpressure. 展开更多
关键词 Methane distribution Inhomogeneous mixture Gradient layer Gas explosion Explosive simulation
在线阅读 下载PDF
Experimental Study on the Coupling Dynamics of Metal Jet,Waves,and Bubble During Underwater Explosion of a Shaped Charge
6
作者 Yu Tian A-Man Zhang +1 位作者 Liu-Yi Xu Fu-Ren Ming 《Engineering》 2025年第7期168-187,共20页
Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show ... Unlike conventional spherical charges,a shaped charge generates not only a strong shock wave and a pulsating bubble,but also a high strain rate metal jet and a ballistic wave during the underwater explosion.They show significant characteristic differences and couple each other.This paper designs and conducts experiments with shaped charges to analyze the complicated process.The effects of liner angle and weight of shaped charge on the characteristics of metal jets,waves,and bubbles are discussed.It is found that in underwater explosions,the shaped charge generates the metal jet accompanied by the ballistic wave.Then,the shock wave propagates and superimposes with the ballistic wave,and the generated bubble pulsates periodically.It is revealed that the maximum head velocity of the metal jet versus the liner angle a and length-to-diameter ratio k of the shaped charge follows the laws of 1/(α/180°)^(0.55)andλ^(0.16),respectively.The head shape and velocity of the metal jet determine the curvature and propagation speed of the initial ballistic wave,thus impacting the superposition time and region with the shock wave.Our findings also reveal that the metal jet carries away some explosion products,which hinders the bubble development,causing an inward depression of the bubble wall near the metal jet.Therefore,the maximum bubble radius and pulsation period are 5.2%and 3.9%smaller than the spherical charge with the same weight.In addition,the uneven axial energy distribution of the shaped charge leads to an oblique bubble jet formation. 展开更多
关键词 Shaped charge Underwater explosion Metal jet WAVES BUBBLE Coupling dynamics
在线阅读 下载PDF
Numerical analysis of a vented methane/air explosion in a large-scale chamber
7
作者 Huadao Xing Guangan Xu +4 位作者 Yanyu Qiu Song Sun Bin Li Mingyang Wang Lifeng Xie 《Defence Technology(防务技术)》 2025年第10期207-219,共13页
The internal and external flow fields during vented explosions of methane were characterized through numerical simulation,and the capability of numerical simulation thereof was validated by previous experimental data ... The internal and external flow fields during vented explosions of methane were characterized through numerical simulation,and the capability of numerical simulation thereof was validated by previous experimental data at three ignition positions.The venting mechanism was revealed by the simulated concentration distribution,temperature profile,and airflow velocity.The results show rear ignition results in the external methane mass distribution taking the form of"mushroom"and columnar flames in the external space,which can be expressed as a third-order polynomial relationship with distance;central ignition forms a relationship of the form y=AxB.Front ignition causes the temperature to show a tendency to repeated oscillations(rising,falling,and rising).Central ignition generates the maximum vented airflow velocity(V_(max)=320 m/s)upon vent opening.The results indicate that it is acceptable to apply numerical simulation of methane explosions in practice. 展开更多
关键词 METHANE Vented explosion Numerical simulation Ignition position Field behavior
在线阅读 下载PDF
Review of Research on Underwater Explosions Related to Ship Damage and Stability
8
作者 Ruiyao Zhang Wei Xiao +1 位作者 Xiongliang Yao Xiaochao Zou 《哈尔滨工程大学学报(英文版)》 2025年第2期285-300,共16页
Researchers have achieved notable advancements over the years in exploring ship damage and stability resulting from underwater explosions(UNDEX).However,numerous challenges and open questions remain in this field.In t... Researchers have achieved notable advancements over the years in exploring ship damage and stability resulting from underwater explosions(UNDEX).However,numerous challenges and open questions remain in this field.In this study,the research progress of UNDEX load is first reviewed,which covers the explosion load during the shock wave and bubble pulsation stages.Subsequently,the research progress of ship damage caused by UNDEX is reviewed from two aspects:contact explosion and noncontact explosion.Finally,the research progress of ship navigation stability caused by UNDEX is reviewed from three aspects:natural factors,ship’s internal factors,and explosion factors.Analysis reveals that most existing research has focused on the damage to displacement ships caused by UNDEX.Meanwhile,less attention has been paid to the damage and stability of non-displacement ships caused by UNDEX,which are worthy of discussion. 展开更多
关键词 Underwater explosion Load characteristics Structural damage STABILITY Non-displacement ships
在线阅读 下载PDF
Dynamic response of blast doors enhanced by enclosed-space TNT explosions: Experimental and numerical study
9
作者 Chenwei Wu Guokai Zhang +3 位作者 Yong He Liwang Liu Ju Liu Xiaoning Yang 《Defence Technology(防务技术)》 2025年第6期173-186,共14页
The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic re... The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic response of reinforced concrete blast doors with four-sided restraints in confined space. Explosion tests with TNT charges ranging from 0.15 kg to 0.4 kg were conducted in a confined space,capturing overpressure loads and the dynamic response of the blast door. An internal explosion model incorporating the afterburning effect was developed using LS-DYNA software and validated against experimental data. The results reveal that the TNT afterburning effect amplifies both the initial peak overpressure and the quasi-static overpressure, resulting in increased deformation of the blast door.Within the 0.15-0.4 kg charge range, the initial overpressure peak and quasi-static overpressure increased by an average of 1.79 times and 2.21 times, respectively. Additionally, the afterburning effect enhanced the blast door's deflection by 177%. Compared to open-space scenarios, the cumulative deflection of the blast door due to repeated shock wave impacts is significantly greater in confined spaces. Furthermore, the quasi-static pressure arising from the structural constraints sustains the blast door's deflection at a high level. 展开更多
关键词 Internal explosion Afterburning effect Constraint effect Reinforced concrete blast door Dynamic response Enhancement effect
在线阅读 下载PDF
Investigation of blasting effects and mechanisms on concrete frustumsunder side-contact explosions
10
作者 Gengxin Kang Yadong Zhang +1 位作者 Xingbo Xie Wenbin Gu 《Defence Technology(防务技术)》 2025年第7期113-127,共15页
Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.Thi... Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.This study investigates the blasting effects and underlying mechanisms of concrete frustums subjected to contact explosions,employing both numerical simulations and field tests.It focuses on the effects of top and side blasting,with particular emphasis on fracture modes,damage patterns,and fragment sizes,as well as the causes of different failure modes and the propagation of stress waves.The study also explores the blasting effects of detonating explosives at varying positions along the side and with different charge amounts.The results show that side-blasting leads to complete fragmentation,with tensile waves playing a significant role in creating extensive damage zones that propagate parallel to the frustum's outer surface,concentrating damage near the surface.During top-blasting,the upper half of the frustum undergoes fragmentation,while the lower half experiences cracking.Tensile waves propagate from the top to the bottom surface,forming larger blocks in regions with lower wave intensity.Three distinct damage zones within the frustum were identified,and a series of mathematical formulas were derived to describe the relationship between the maximum fragment size and charge mass.As the charge mass increased from 1.0 kg to 4.0 kg,the maximum fragment size decreased.Detonation at the center of the frustum's side resulted in the most severe fragmentation,with a 51.8%reduction in fragment size compared to other detonation positions.Finally,four broken modes were classified,each influenced by charge mass and explosive location.This study provides valuable insights for optimizing civil blasting operations and designing protective engineering structures. 展开更多
关键词 Concrete frustum Blasting effects Numerical simulation Contact explosion Stress wave propagation Field blast test
在线阅读 下载PDF
Study of the explosion load characteristics and structural response law under a cabin water mist environment: Experimental tests and simulations
11
作者 Xiaobin Li Ya Zhang +4 位作者 Yiheng Zhang Hai Huang Zhiping Wang Xingxing Wu Wei Chen 《Defence Technology(防务技术)》 2025年第7期387-404,共18页
To investigate the explosion load characteristics and structural response law in a water mist environment in a cabin,explosion experiments are carried out.The weakening rates of the initial peak overpressure,quasistat... To investigate the explosion load characteristics and structural response law in a water mist environment in a cabin,explosion experiments are carried out.The weakening rates of the initial peak overpressure,quasistatic pressure and structural residual deflection increase with increasing working pressure of the water mist nozzle.Specifically,the weakening rate of the initial peak overpressure ranges from 7.8%to 31.0%,the quasistatic pressure weakening rate ranges from 29.2%to 41.0%,and the weakening rate of the center of the plate residual deflection ranges from 10.8%to 34.4%under the various working pressures of the nozzles.To further explore the effect of water mist explosion suppression,a method for three-dimensional numerical simulations of water mist weakening the explosion shock wave is established to explore the explosion load characteristics of the compartment and the bulkhead response law.On the basis of the dimension analysis method,empirical formulas are derived to predict the residual deflection thickness in the center of the bulkheads.These findings provide the fundamental basis for the appli-cation of water mist in anti-explosive protection. 展开更多
关键词 Cabin explosion Blast response Fluidesolid coupling Load weakening Water mist suppression
在线阅读 下载PDF
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
12
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 Large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
Directional Explosion of Finite Volume Water Confined in a Single-End-Opened CNT
13
作者 Jiahao Liu Yuanyuan Kang +2 位作者 Kun Cai Haiyan Duan Jiao Shi 《Computers, Materials & Continua》 2025年第8期2573-2586,共14页
The directional explosion behavior of finite volume water confined within nanochannels holds considerable potential for applications in precision nanofabrication and bioengineering.However,precise control of nanoscale... The directional explosion behavior of finite volume water confined within nanochannels holds considerable potential for applications in precision nanofabrication and bioengineering.However,precise control of nanoscale mass transfer remains challenging in nanofluidics.This study examined the dynamic evolution of water clusters confined within a single-end-opened carbon nanotube(CNT)under pulsed electric field(EF)excitation,with a particular focus on the structural reorganization of hydrogen bond(H-bond)networks and dipole orientation realignment.Molecular dynamics simulations reveal that under the influence of pulsed EF,the confinedwatermolecules undergo cooperative restructuring to maximize hydrogen bond formation through four independent motions during deformation,such as waving,spinning,axial slipping,and radial migration.In this process,the dynamic fracture and recombination of the hydrogen bond network generate an instantaneous high pressure,and drive a unidirectional explosion along the CNT axis.A smaller CNT diameter or a reduced water volume under the same EF conditions leads to a stronger explosion.In contrast,in a wider CNT,the water cluster expands axially and forms a cylindrical shell whose thickness gradually decreases as the axial expansion slows.These insights offer precise control strategies for nanofluidic systems in nanofabrication or bioengineering applications,where finite volume water serves as a programmable nanoscale energy transfer medium. 展开更多
关键词 Finite volume water mass transfer directional explosion electric field molecular dynamics
在线阅读 下载PDF
Bubble Theory and its Applications in Underwater Explosion, Marine Cavitation, and Seismic Exploration
14
作者 Runze Xu Shiping Wang +1 位作者 Hemant J.Sagar Haikun Wang 《哈尔滨工程大学学报(英文版)》 2025年第2期255-284,共30页
Bubbles play crucial roles in various fields,including naval and ocean engineering,chemical engineering,and biochemical engineering.Numerous theoretical analyses,numerical simulations,and experimental studies have bee... Bubbles play crucial roles in various fields,including naval and ocean engineering,chemical engineering,and biochemical engineering.Numerous theoretical analyses,numerical simulations,and experimental studies have been conducted to reveal the mysteries of bubble motion and its mechanisms.These efforts have significantly advanced research in bubble dynamics,where theoretical study is an efficient method for bubble motion prediction.Since Lord Rayleigh introduced the theoretical model of single-bubble motion in incompressible fluid in 1917,theoretical studies have been pivotal in understanding bubble dynamics.This study provides a comprehensive review of the development and applicability of theoretical studies in bubble dynamics using typical theoretical bubble models across different periods as a focal point and an overview of bubble theory applications in underwater explosion,marine cavitation,and seismic exploration.This study aims to serve as a reference and catalyst for further advancements in theoretical analysis and practical applications of bubble theory across marine fields. 展开更多
关键词 Bubble theory Underwater explosion Marine cavitation Seismic exploration
在线阅读 下载PDF
Oscillation mechanism and predictive model of explosion load for natural gas in confined tube
15
作者 Chengjun Yue Li Chen Linfeng Xu 《Defence Technology(防务技术)》 2025年第3期13-27,共15页
Gas explosion in confined space often leads to significant pressure oscillation.It is widely recognized that structural damage can be severe when the oscillation frequency of the load resonates with the natural vibrat... Gas explosion in confined space often leads to significant pressure oscillation.It is widely recognized that structural damage can be severe when the oscillation frequency of the load resonates with the natural vibration frequency of the structure.To reveal the oscillation mechanism of gas explosion load,the experiment of gas explosion was conducted in a large-scale confined tube with the length of 30 m,and the explosion process was numerically analyzed using FLACS.The results show that the essential cause of oscillation effect is the reflection of the pressure wave.In addition,due to the difference in the propagation path of the pressure wave,the load oscillation frequency at the middle position of the tunnel is twice that at the end position.The average sound velocity can be used to calculate the oscillation frequency of overpressure accurately,and the error is less than 15%.The instability of the flame surface and the increase of flame turbulence caused by the interaction between the pressure wave and the flame surface are the main contributors to the increase in overpressure and amplitude.The overpressure peaks calculated by the existing flame instability model and turbulence disturbance model are 31.7%and 34.7%lower than the numerical results,respectively.The turbulence factor model established in this work can describe the turbulence enhancement effect caused by flame instability and oscillatory load,and the difference between the theoretical and numerical results is only 4.6%.In the theoretical derivation of the overpressure model,an improved model of dynamic turbulence factor is established,which can describe the enhancement effect of turbulence factor caused by flame instability and self-turbulence.Based on the one-dimensional propagation theory of pressure wave,the oscillatory effect of the load is derived to calculate the frequency and amplitude of pressure oscillation.The average error of amplitude and frequency is less than 20%. 展开更多
关键词 Gas explosion Oscillatory load Oscillation frequency Turbulence factor
在线阅读 下载PDF
Surface-covering water significantly amplifies the explosion impulse of shallow buried explosives 被引量:1
16
作者 Zhenyu Zhao Wenbo Gao +6 位作者 Jianwei Ren Zihan Lan Zhiyang Zhang Huiyao Gao Chao He Changye Ni Tianjian Lu 《Defence Technology(防务技术)》 2025年第6期156-172,共17页
While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and ... While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs. 展开更多
关键词 Shallow buried explosives Fluid-structure interaction Surface-covering water Impulse distribution
在线阅读 下载PDF
The influence mechanism of liquid sedimentary layers in urban underground spaces on the characteristics of natural gas explosions and damage risk
17
作者 Qi Jing Zi-Yu Fan +1 位作者 Rui Zhou Yun-Tao Li 《Petroleum Science》 2025年第6期2619-2629,共11页
Gas explosions are a frequent hazard in underground confined spaces in the process of urban development.Liquid sedimentary layers,commonly present in these environments,have not been sufficiently studied in terms of t... Gas explosions are a frequent hazard in underground confined spaces in the process of urban development.Liquid sedimentary layers,commonly present in these environments,have not been sufficiently studied in terms of their impact on explosion dynamics.This study aims to investigate how gas-liquid two-phase environments in confined underground spaces affect the explosion characteristics of natural gas.To achieve this,experiments are conducted to examine the propagation of natural gas explosions in water and diesel layers,focusing on the influence of liquid properties and the liquid fullness degree(Lx)on explosion behavior.The results indicate that the presence of a liquid layer after the initial ignition stage significantly attenuates both the peak overpressure and the rise speed of pressure,in comparison to the natural gas conditions.During the subsequent explosive reaction,the evaporation and combustion of the diesel surface resulted in a distinct double-peak pressure rise profile in the diesel layer,with the second peak notably exceeding the first peak.Under conditions with a liquid sedimentary layer,the flame propagation velocities range from 6.53 to 34.1 m/s,while the overpressure peaks vary between 0.157 and 0.255 MPa.The explosion duration in both the water and diesel layer environments is approximately twice as long as that of the natural gas explosion,although the underlying mechanisms differ.In the diesel layer,the prolonged explosion time is attributed to the evaporation and combustion of the diesel,while in the water layer,the flame propagation velocity is significantly reduced.Under the experimental conditions,the maximum explosion energy reached 7.15×10~6J,corresponding to a TNT equivalent of 1.7.The peak overpressure surpassed the threshold for human fatality as defined by overpressure standards,posing a potential risk of damage to large steel-frame structures.The explosion shockwave in diesel layer conditions(L_(d)=0%,5%,7.5%,12.5%)and water layer(L_(w)=12.5%)conditions is observed to be sufficient to damage earthquake-resistant reinforced concrete.This study investigates the impact of sediment layer thickness and composition on gas explosions,and evaluates the associated explosion energy to assess human injuries and structural damage in underground environments.The findings of this study provide a scientific reference for urban underground safety. 展开更多
关键词 Underground space Liquid fullness degree Gas-liquid coexistence Peak overpressure Explosive risk
原文传递
A novel method for simulating nuclear explosion with chemical explosion to form an approximate plane wave: Field test and numerical simulation 被引量:1
18
作者 Wei Ming Xiaojie Yang +3 位作者 Yadong Mao Xiang Wang Manchao He Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2137-2153,共17页
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in... A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion. 展开更多
关键词 Approximate plane wave Multi-hole simultaneous blasting Chemical explosion Nuclear explosion Pressure sensor inclusion
在线阅读 下载PDF
Numerical Analysis of Explosion Characteristics of Vent Gas From 18650 LiFePO_(4) Batteries With Different States of Charge
19
作者 Shi-Lin Wang Xu Gong +5 位作者 Li-Na Liu Yi-Tong Li Chen-Yu Zhang Le-Jun Xu Xu-Ning Feng Huai-Bin Wang 《电化学(中英文)》 CAS 北大核心 2024年第8期28-35,共8页
The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba... The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents. 展开更多
关键词 Combustion and explosion characteristics explosion limit Laminar flame speed Adiabatic flame temperature Sensitivity analysis
在线阅读 下载PDF
Experimental investigation of methane explosion fracturing in bedding shales:Load characteristics and three-dimensional fracture propagation 被引量:2
20
作者 Yu Wang Cheng Zhai +5 位作者 Ting Liu Jizhao Xu Wei Tang Yangfeng Zheng Xinyu Zhu Ning Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1365-1383,共19页
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl... Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology. 展开更多
关键词 Methane in-situ explosion fracturing Bedding shale Fracture propagation Three-dimensional reconstruction Crack-generated fines Fractal dimension
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部