Marine shale gas in the southern Sichuan Basin is the most successful area of shale gas exploration and development in China.In order to open up new shale gas fields and search for new shale gas reserves and productio...Marine shale gas in the southern Sichuan Basin is the most successful area of shale gas exploration and development in China.In order to open up new shale gas fields and search for new shale gas reserves and production replacement blocks,it is necessary to continuously establish and complete the standards on shale gas reservoir evaluation and area selection under different structural settings.The early exploration practice shows that shale in the mountainous complex structural area along the southwestern margin of the Sichuan Basin varies greatly in the gas bearing property,so systematical analysis and study on the shale gas enrichment mechanisms in this area is of great significance to searching for new shale gas exploration areas.Based on drilling data of 5 wells in the mountainous complex structural area along the southwestern margin of the Sichuan Basin,the main factors controlling the shale gas bearing property and the shale gas enrichment model were discussed based on the systematical experiments and analysis of the outcrops,cores and cuttings of Longmaxi Formation shale from the aspects of organic geochemistry,physical property,gas content,hydrocarbon generation history and pore evolution history,so as to lay a solid geological basis for the birth of a new shale gas area.And the following research results were obtained.First,the shale of the first submember of first Member of Longmaxi Formation(S1l11)in the mountainous complex structural area along the southwestern margin of the Sichuan Basin has an average TOC of 3.02%–4.97%and Ro of 2.38%–3.37%,and the average total gas content in local enrichment zones is up to 4.62 m^(3)/t,so it is classified as quality shale.Second,the detailed studies on hydrocarbon generation history indicate that the shale has the characteristics of“low thermal evolution rate and low maturity”.It is characterized by late hydrocarbon generation,low thermal evolution rate,low current maturity and short late diffusion time,which are favorable for shale gas enrichment.Third,the pore evolution history reveals that shale pore evolution can be divided into six stages,i.e.,sharp pore reduction,pore reduction,organic pore formation,pore preservation,organic pore dissipation and karstification,and organic pore and TOC are the most direct control factors of shale gas content.Fourth,favorable shelf facies belt is conducive to the formation of large-scale reservoir space and effective pores,and diversities of preservation conditions under different structural styles and at different structural positions control different pore evolution stages.The shale gas in the mountainous complex structural area is characterized by horizontal zoning and differential enrichment.“Low thermal evolution rate and low maturity”and“slow structural uplifting”are beneficial to the long-term enrichment and preservation of shale gas.In conclusion,the mountainous complex structural area along the southwestern margin of the Sichuan Basin has a shale gas enrichment model of“sedimentation controlling source rocks,diagenesis controlling reservoirs and structure controlling preservation”.This research result provides idea and reference for searching for new shale gas areas and fields.展开更多
Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional p...Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional process is regarded confusing. The microfacies, construction types, and depositional model of the Member Deng-2 marginal microbial mound-bank complex have been investigated using unmanned aerial vehicle photography, outcrop section investigation, thin section identification,and seismic reflections in the southwestern Sichuan Basin. The microbialite lithologic textures in this region include thrombolite, dendrolite, stromatolite, fenestral stromatolite, spongiostromata stone,oncolite, aggregated grainstone, and botryoidal grapestone. Based on the comprehensive analysis of“depositional fabrics-lithology-microfacies”, an association between a fore mound, mound framework,and back mound subfacies has been proposed based on water depth, current direction, energy level and lithologic assemblages. The microfacies of the mound base, mound core, mound flank, mound cap, and mound flat could be recognized among the mound framework subfacies. Two construction types of marginal microbial mound-bank complex have been determined based on deposition location, mound scale, migration direction, and sedimentary facies association. Type Jinkouhe microbial mound constructions(TJMMCs) develop along the windward margin owing to their proximity to the seaward subfacies fore mound, with a northeastwardly migrated microbial mound on top of the mud mound,exhibiting the characteristics of large-sized mounds and small-sized banks in the surrounding area. Type E'bian microbial mound constructions(TEMMCs) primarily occur on the leeward margin, resulting from the presence of onshore back mound subfacies, with the smaller southwestward migrated microbial mounds existing on a thicker microbial flat. The platform margin microbial mound depositional model can be correlated with certain lateral comparison profile and seismic reflection structures in the 2D seismic section, which can provide references for future worldwide exploration. Microbial mounds with larger buildups and thicker vertical reservoirs are typically targeted on the windward margin, while small-sized microbial mounds and flats with better lateral connections are typically focused on the leeward margin.展开更多
基金supported by the National Major Science and Technology Project“Test and application of reconnaissance and evaluation technologies for shale gas”(No.:2016ZX05034004)the Project of China Geological Survey“Basic geologic survey of Lower Paleozoic marine shale gas in Sichuan Basin”(No.:DD20160176)+1 种基金“Survey on strategic zone of shale gas in Longmaxi Formation,Sichuan Basin”(No.:DD20160193)“Survey on shale gas enrichment conditions in Sichuan Basin”(No.:12120114071401).
文摘Marine shale gas in the southern Sichuan Basin is the most successful area of shale gas exploration and development in China.In order to open up new shale gas fields and search for new shale gas reserves and production replacement blocks,it is necessary to continuously establish and complete the standards on shale gas reservoir evaluation and area selection under different structural settings.The early exploration practice shows that shale in the mountainous complex structural area along the southwestern margin of the Sichuan Basin varies greatly in the gas bearing property,so systematical analysis and study on the shale gas enrichment mechanisms in this area is of great significance to searching for new shale gas exploration areas.Based on drilling data of 5 wells in the mountainous complex structural area along the southwestern margin of the Sichuan Basin,the main factors controlling the shale gas bearing property and the shale gas enrichment model were discussed based on the systematical experiments and analysis of the outcrops,cores and cuttings of Longmaxi Formation shale from the aspects of organic geochemistry,physical property,gas content,hydrocarbon generation history and pore evolution history,so as to lay a solid geological basis for the birth of a new shale gas area.And the following research results were obtained.First,the shale of the first submember of first Member of Longmaxi Formation(S1l11)in the mountainous complex structural area along the southwestern margin of the Sichuan Basin has an average TOC of 3.02%–4.97%and Ro of 2.38%–3.37%,and the average total gas content in local enrichment zones is up to 4.62 m^(3)/t,so it is classified as quality shale.Second,the detailed studies on hydrocarbon generation history indicate that the shale has the characteristics of“low thermal evolution rate and low maturity”.It is characterized by late hydrocarbon generation,low thermal evolution rate,low current maturity and short late diffusion time,which are favorable for shale gas enrichment.Third,the pore evolution history reveals that shale pore evolution can be divided into six stages,i.e.,sharp pore reduction,pore reduction,organic pore formation,pore preservation,organic pore dissipation and karstification,and organic pore and TOC are the most direct control factors of shale gas content.Fourth,favorable shelf facies belt is conducive to the formation of large-scale reservoir space and effective pores,and diversities of preservation conditions under different structural styles and at different structural positions control different pore evolution stages.The shale gas in the mountainous complex structural area is characterized by horizontal zoning and differential enrichment.“Low thermal evolution rate and low maturity”and“slow structural uplifting”are beneficial to the long-term enrichment and preservation of shale gas.In conclusion,the mountainous complex structural area along the southwestern margin of the Sichuan Basin has a shale gas enrichment model of“sedimentation controlling source rocks,diagenesis controlling reservoirs and structure controlling preservation”.This research result provides idea and reference for searching for new shale gas areas and fields.
基金jointly funded by projects supported by the National Natural Science Foundation of China(Grant No.41872150)the Joint Funds of the National Natural Science Foundation of China(Grant No.U19B6003)Major Scientific and Technological Projects of CNPC during the 13th five-year plan(No.2019A-02-10)。
文摘Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional process is regarded confusing. The microfacies, construction types, and depositional model of the Member Deng-2 marginal microbial mound-bank complex have been investigated using unmanned aerial vehicle photography, outcrop section investigation, thin section identification,and seismic reflections in the southwestern Sichuan Basin. The microbialite lithologic textures in this region include thrombolite, dendrolite, stromatolite, fenestral stromatolite, spongiostromata stone,oncolite, aggregated grainstone, and botryoidal grapestone. Based on the comprehensive analysis of“depositional fabrics-lithology-microfacies”, an association between a fore mound, mound framework,and back mound subfacies has been proposed based on water depth, current direction, energy level and lithologic assemblages. The microfacies of the mound base, mound core, mound flank, mound cap, and mound flat could be recognized among the mound framework subfacies. Two construction types of marginal microbial mound-bank complex have been determined based on deposition location, mound scale, migration direction, and sedimentary facies association. Type Jinkouhe microbial mound constructions(TJMMCs) develop along the windward margin owing to their proximity to the seaward subfacies fore mound, with a northeastwardly migrated microbial mound on top of the mud mound,exhibiting the characteristics of large-sized mounds and small-sized banks in the surrounding area. Type E'bian microbial mound constructions(TEMMCs) primarily occur on the leeward margin, resulting from the presence of onshore back mound subfacies, with the smaller southwestward migrated microbial mounds existing on a thicker microbial flat. The platform margin microbial mound depositional model can be correlated with certain lateral comparison profile and seismic reflection structures in the 2D seismic section, which can provide references for future worldwide exploration. Microbial mounds with larger buildups and thicker vertical reservoirs are typically targeted on the windward margin, while small-sized microbial mounds and flats with better lateral connections are typically focused on the leeward margin.