Stochastic heat conduction and thermal stress analysis of structures has received considerable attention in recent years.The propagation of uncertain thermal environments will lead to stochastic variations in temperat...Stochastic heat conduction and thermal stress analysis of structures has received considerable attention in recent years.The propagation of uncertain thermal environments will lead to stochastic variations in temperature fields and thermal stresses.Therefore,it is reasonable to consider the variability of thermal environments while conducting thermal analysis.However,for ambient thermal excitations,only stationary random processes have been investigated thus far.In this study,the highly efficient explicit time-domain method(ETDM)is proposed for the analysis of non-stationary stochastic transient heat conduction and thermal stress problems.The explicit time-domain expressions of thermal responses are first constructed for a thermoelastic body.Then the statistical moments of thermal displacements and stresses can be directly obtained based on the explicit expressions of thermal responses.A numerical example involving non-stationary stochastic internal heat generation rate is investigated.The accuracy and efficiency of the proposed method are validated by comparison with the Monte-Carlo simulation.展开更多
The hydroelastic behavior of a moored oil storage vessel subjected to arbitrary time-dependent external loads,which include wind,waves,and currents with different incident directions,is investigated with the time-doma...The hydroelastic behavior of a moored oil storage vessel subjected to arbitrary time-dependent external loads,which include wind,waves,and currents with different incident directions,is investigated with the time-domain modal expansion method.First,the water boundary integral equations on the body surface of a quarter model,which can be obtained via the free-surface Green’s function method,are established.Then,the time-dependent elastic deflection of the moored oil storage vessel is expressed by a superposition of modal functions and corresponding modal amplitudes,and a Galerkin scheme is applied to derive the linear system of equations for the modal amplitudes.The second-order linear differential equations for modal amplitudes are solved via the fourth-order Runge−Kutta method.The present model is validated against existing frequency domain results for a truncated cylinder and a VLFS.Numerical calculations for the moored oil storage vessel are then conducted to obtain the time series of various modal amplitudes and elastic displacements of the measurement points and the corresponding spectra with different incident directions.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform(IFFT).Considering the substantial displacement effects that Floating Offshore...This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform(IFFT).Considering the substantial displacement effects that Floating Offshore Wind Turbine(FOWT)support structures undergo when subjected to wave loads,the time-domain wave method is more suitable,while the frequency-domain method requiring IFFT cannot be used for moving bodies.Nonetheless,the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle.Thus,the paper incorporates various numerical schemes,including parallel computing and extrapolation of wave forces during specific time steps to improve overall efficiency.Despite the effectiveness of these schemes,the computational difficulties associated with the time-domain wave method persist.This study then proposes an innovative approach utilizing different randomnumbers in distinct segments,significantly reducing the computation of second-order wave loads.This random number interpolation ensures a smooth curve transition between two segments,emphasizingminimizing errors near the end of the first segment.Numerical analyses demonstrate substantial decreases in total computer time for FOWT structural analyses while maintaining consistent steel design results.The proposed method is uncomplicated,requiring only a simple subprogram modification in a conventional wave load computer program.展开更多
Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this...Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained.展开更多
An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite...An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.展开更多
A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the l...A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation characteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the central difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equations by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical analysis and the numerical results demonstrate that the proposed method has high accuracy and good stability.展开更多
As a novel kind of particle method for explicit dynamics,the finite particle method(FPM)does not require the formation or solution of global matrices,and the evaluations of the element equivalent forces and particle d...As a novel kind of particle method for explicit dynamics,the finite particle method(FPM)does not require the formation or solution of global matrices,and the evaluations of the element equivalent forces and particle displacements are decoupled in nature,thus making this method suitable for parallelization.The FPM also requires an acceleration strategy to overcome the heavy computational burden of its explicit framework for time-dependent dynamic analysis.To this end,a GPU-accelerated parallel strategy for the FPM is proposed in this paper.By taking advantage of the independence of each step of the FPM workflow,a generic parallelized computational framework for multiple types of analysis is established.Using the Compute Unified Device Architecture(CUDA),the GPU implementations of the main tasks of the FPM,such as evaluating and assembling the element equivalent forces and solving the kinematic equations for particles,are elaborated through careful thread management and memory optimization.Performance tests show that speedup ratios of 8,25 and 48 are achieved for beams,hexahedral solids and triangular shells,respectively.For examples consisting of explicit dynamic analyses of shells and solids,comparisons with Abaqus using 1 to 8 CPU cores validate the accuracy of the results and demonstrate a maximum speed improvement of a factor of 11.2.展开更多
A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedur...A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable.展开更多
In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models...In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models. Approaches to develop the stable formulas which are of 2M-order accuracy in both time and space with Mbeing a positive integer for regular grids are discussed and illustrated by constructing the second order (M= 1) and the fourth order (M = 2) recursion formulas.展开更多
Guided waves are generally considered as a powerful approach for crack detection in structures,which are commonly investigated using the finite element method(FEM).However,the traditional FEM has many disadvantages in...Guided waves are generally considered as a powerful approach for crack detection in structures,which are commonly investigated using the finite element method(FEM).However,the traditional FEM has many disadvantages in solving wave propagation due to the strict requirement of mesh density.To tackle this issue,this paper proposes an efficient time-domain spectral finite element method(SFEM)to analyze wave propagation in cracked structures,in which the breathing crack is modeled by definiiig the spectral gap element.Moreover,novel orthogonal polynomials and Gauss-Lobatto-Legendre quadrature rules are adopted to construct the spectral element.Meanwhile,a separable hard contact is utilized to simulate the breathing behavior.Finally,a comparison of the numerical results between the FEM and the SFEM is conducted to demonstrate the high efficiency and accuracy of the proposed method.Based on the developed SFEM,the nonlinear features of waves and influence of the incident mode are also studied in detail,which provides a helpful guide for a physical understanding of the wave propagation behavior in structures with breathing cracks.展开更多
A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect ...A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect the refractive index and extinction coefficient on different plastic materials. Then the corresponding spectral information is obtained by Fourier transform of the terahertz time domain waveform of the sampling points, including the corresponding amplitude and phase information of the waveform. The optical parameter extraction model is built. By using the simplex optimization method, the curves of the refractive index and extinction coefficient for the plastic material are obtained. The experimental samples are made of different plastic parallel plate materials. The experimental results show that the optimization of optical parameters can improve their extraction accuracy, and the error of refractive index is ±0.005. Extraction technology with the simplex optimization method of optical parameter based on THz TDS can help to extract the optical parameters of engineering plastics. It is of great significance for the research of terahertz nondestructive testing.展开更多
Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow pheno...Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.展开更多
In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform ...In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform cubic grids, the approach used to establish stable formulas with 2M-order accuracy is discussed in detail, with M being a positive integer, and is illustrated by establishing second order (M=1) recursion formulas. The theoretical results presented in this paper are demonstrated through numerical testing.展开更多
A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
To study wave-current actions on 3-D bodies a time-domain numerical model was established using a higher-order boundary element method(HOBEM).By assuming small flow velocities,the velocity potential could be expressed...To study wave-current actions on 3-D bodies a time-domain numerical model was established using a higher-order boundary element method(HOBEM).By assuming small flow velocities,the velocity potential could be expressed for linear and higher order components by perturbation expansion.A 4th-order Runge-Kutta method was applied for time marching.An artificial damping layer was adopted at the outer zone of the free surface mesh to dissipate scattering waves.Validation of the numerical method was carried out on run-up,wave exciting forces,and mean drift forces for wave-currents acting on a bottom-mounted vertical cylinder.The results were in close agreement with the results of a frequency-domain method and a published time-domain method.The model was then applied to compute wave-current forces and run-up on a Seastar mini tension-leg platform.展开更多
This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the...This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.展开更多
The generalized Zakharov equation is a coupled equation which is a classic nonlinear mathematic model in plasma. A series of new exact explicit solutions of the system are obtained, by means of the first integral meth...The generalized Zakharov equation is a coupled equation which is a classic nonlinear mathematic model in plasma. A series of new exact explicit solutions of the system are obtained, by means of the first integral method, in the form of trigonometric and exponential functions. The results show the first integral method is an efficient way to solve the coupled nonlinear equations and get rich explicit analytical solutions.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
基金funded by the National Natural Science Foundation of China (51678252)the Guangzhou Science and Technology Project (201804020069)
文摘Stochastic heat conduction and thermal stress analysis of structures has received considerable attention in recent years.The propagation of uncertain thermal environments will lead to stochastic variations in temperature fields and thermal stresses.Therefore,it is reasonable to consider the variability of thermal environments while conducting thermal analysis.However,for ambient thermal excitations,only stationary random processes have been investigated thus far.In this study,the highly efficient explicit time-domain method(ETDM)is proposed for the analysis of non-stationary stochastic transient heat conduction and thermal stress problems.The explicit time-domain expressions of thermal responses are first constructed for a thermoelastic body.Then the statistical moments of thermal displacements and stresses can be directly obtained based on the explicit expressions of thermal responses.A numerical example involving non-stationary stochastic internal heat generation rate is investigated.The accuracy and efficiency of the proposed method are validated by comparison with the Monte-Carlo simulation.
基金financially supported by the Department of Natural Resources of Guangdong Province(Grant No.[2024]31)the National Natural Science Foundation of China(Grant No.52071145)+1 种基金the Natural Science Foundation of Guangdong Province,China(Grant No.2022B1515020071)the Fundamental Research Funds for the Central Universities(Grant No.2023ZYGXZR029).
文摘The hydroelastic behavior of a moored oil storage vessel subjected to arbitrary time-dependent external loads,which include wind,waves,and currents with different incident directions,is investigated with the time-domain modal expansion method.First,the water boundary integral equations on the body surface of a quarter model,which can be obtained via the free-surface Green’s function method,are established.Then,the time-dependent elastic deflection of the moored oil storage vessel is expressed by a superposition of modal functions and corresponding modal amplitudes,and a Galerkin scheme is applied to derive the linear system of equations for the modal amplitudes.The second-order linear differential equations for modal amplitudes are solved via the fourth-order Runge−Kutta method.The present model is validated against existing frequency domain results for a truncated cylinder and a VLFS.Numerical calculations for the moored oil storage vessel are then conducted to obtain the time series of various modal amplitudes and elastic displacements of the measurement points and the corresponding spectra with different incident directions.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
基金funded by National Science and Technology Council,grant number NSTC 113-2223-E-006-014.
文摘This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform(IFFT).Considering the substantial displacement effects that Floating Offshore Wind Turbine(FOWT)support structures undergo when subjected to wave loads,the time-domain wave method is more suitable,while the frequency-domain method requiring IFFT cannot be used for moving bodies.Nonetheless,the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle.Thus,the paper incorporates various numerical schemes,including parallel computing and extrapolation of wave forces during specific time steps to improve overall efficiency.Despite the effectiveness of these schemes,the computational difficulties associated with the time-domain wave method persist.This study then proposes an innovative approach utilizing different randomnumbers in distinct segments,significantly reducing the computation of second-order wave loads.This random number interpolation ensures a smooth curve transition between two segments,emphasizingminimizing errors near the end of the first segment.Numerical analyses demonstrate substantial decreases in total computer time for FOWT structural analyses while maintaining consistent steel design results.The proposed method is uncomplicated,requiring only a simple subprogram modification in a conventional wave load computer program.
文摘Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained.
文摘An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.
基金the National Natural Science Foundation of China(50478014)the National 973 Program(2007CB714200)the Beijing Natural Science Foundation(8061003).
文摘A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation characteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the central difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equations by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical analysis and the numerical results demonstrate that the proposed method has high accuracy and good stability.
基金the financial support provided by the National Key Research and Development Program of China(Grant No.2016YFC0800200)the National Natural Science Foundation of China(Grant Nos.51578494 and 51778568)the Fundamental Research Funds for the Central Universities(Grant No.2019QNA4043).
文摘As a novel kind of particle method for explicit dynamics,the finite particle method(FPM)does not require the formation or solution of global matrices,and the evaluations of the element equivalent forces and particle displacements are decoupled in nature,thus making this method suitable for parallelization.The FPM also requires an acceleration strategy to overcome the heavy computational burden of its explicit framework for time-dependent dynamic analysis.To this end,a GPU-accelerated parallel strategy for the FPM is proposed in this paper.By taking advantage of the independence of each step of the FPM workflow,a generic parallelized computational framework for multiple types of analysis is established.Using the Compute Unified Device Architecture(CUDA),the GPU implementations of the main tasks of the FPM,such as evaluating and assembling the element equivalent forces and solving the kinematic equations for particles,are elaborated through careful thread management and memory optimization.Performance tests show that speedup ratios of 8,25 and 48 are achieved for beams,hexahedral solids and triangular shells,respectively.For examples consisting of explicit dynamic analyses of shells and solids,comparisons with Abaqus using 1 to 8 CPU cores validate the accuracy of the results and demonstrate a maximum speed improvement of a factor of 11.2.
基金The project was financially supported by the National Natural Science Foundation of China under the Grant No. 19732004 the National Science Fund for Distinguished Young Scholars under the Grant No. 50029002
文摘A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable.
基金National Basic Research Program of China Under Grant No. 2007CB714200National Natural Science Foundation of China Under Grant No. 90715038
文摘In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models. Approaches to develop the stable formulas which are of 2M-order accuracy in both time and space with Mbeing a positive integer for regular grids are discussed and illustrated by constructing the second order (M= 1) and the fourth order (M = 2) recursion formulas.
基金the National Natural Sclenee Foundation of China(Grant No.51704222)China Pastdoctoral Science Foundation(Grant No.2018M633570)Fundamental Research Funds for the Cemtal Unveritiee(Grant No.3102017090004).
文摘Guided waves are generally considered as a powerful approach for crack detection in structures,which are commonly investigated using the finite element method(FEM).However,the traditional FEM has many disadvantages in solving wave propagation due to the strict requirement of mesh density.To tackle this issue,this paper proposes an efficient time-domain spectral finite element method(SFEM)to analyze wave propagation in cracked structures,in which the breathing crack is modeled by definiiig the spectral gap element.Moreover,novel orthogonal polynomials and Gauss-Lobatto-Legendre quadrature rules are adopted to construct the spectral element.Meanwhile,a separable hard contact is utilized to simulate the breathing behavior.Finally,a comparison of the numerical results between the FEM and the SFEM is conducted to demonstrate the high efficiency and accuracy of the proposed method.Based on the developed SFEM,the nonlinear features of waves and influence of the incident mode are also studied in detail,which provides a helpful guide for a physical understanding of the wave propagation behavior in structures with breathing cracks.
基金National defense technical basic research project,Terahertz detection technology and application research on ceramic matrix composites(JSZL2015411C002)
文摘A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect the refractive index and extinction coefficient on different plastic materials. Then the corresponding spectral information is obtained by Fourier transform of the terahertz time domain waveform of the sampling points, including the corresponding amplitude and phase information of the waveform. The optical parameter extraction model is built. By using the simplex optimization method, the curves of the refractive index and extinction coefficient for the plastic material are obtained. The experimental samples are made of different plastic parallel plate materials. The experimental results show that the optimization of optical parameters can improve their extraction accuracy, and the error of refractive index is ±0.005. Extraction technology with the simplex optimization method of optical parameter based on THz TDS can help to extract the optical parameters of engineering plastics. It is of great significance for the research of terahertz nondestructive testing.
基金King Mongkut’s University of Technology North Bangkok (KMUTNB)the Office of the Higher Education Commission (OHEC)the National Metal and Materials Technology Center (MTEC) for supporting this research work
文摘Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.
基金China Postdoctoral Science Foundation Under Grant No.20100480321National Basic Research Program of China Under Grant No. 2007CB714200
文摘In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform cubic grids, the approach used to establish stable formulas with 2M-order accuracy is discussed in detail, with M being a positive integer, and is illustrated by establishing second order (M=1) recursion formulas. The theoretical results presented in this paper are demonstrated through numerical testing.
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.
基金Supported by the National Natural Science Foundation of China under (Grant No.107 72040,50709005 and 50921001)the Major National Science and Technology Projects of China under (Grant No.2008ZX05026-02)the Open Fund of State Key Laboratory of Ocean Engineering
文摘To study wave-current actions on 3-D bodies a time-domain numerical model was established using a higher-order boundary element method(HOBEM).By assuming small flow velocities,the velocity potential could be expressed for linear and higher order components by perturbation expansion.A 4th-order Runge-Kutta method was applied for time marching.An artificial damping layer was adopted at the outer zone of the free surface mesh to dissipate scattering waves.Validation of the numerical method was carried out on run-up,wave exciting forces,and mean drift forces for wave-currents acting on a bottom-mounted vertical cylinder.The results were in close agreement with the results of a frequency-domain method and a published time-domain method.The model was then applied to compute wave-current forces and run-up on a Seastar mini tension-leg platform.
基金Project supported by Tianjin Research Program Application Foundation and Advanced Technology,China(Grant No.15JCQNJC01100)
文摘This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.
文摘The generalized Zakharov equation is a coupled equation which is a classic nonlinear mathematic model in plasma. A series of new exact explicit solutions of the system are obtained, by means of the first integral method, in the form of trigonometric and exponential functions. The results show the first integral method is an efficient way to solve the coupled nonlinear equations and get rich explicit analytical solutions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.