期刊文献+
共找到132,453篇文章
< 1 2 250 >
每页显示 20 50 100
An efficient Bayesian network for differential diagnosis using experts’knowledge 被引量:2
1
作者 Mohammad Mahdi Ershadi Abbas Seifi 《International Journal of Intelligent Computing and Cybernetics》 EI 2020年第1期103-126,共24页
Purpose-This study aims to differential diagnosis of some diseases using classification methods to support effective medical treatment.For this purpose,different classification methods based on data,experts’knowledge... Purpose-This study aims to differential diagnosis of some diseases using classification methods to support effective medical treatment.For this purpose,different classification methods based on data,experts’knowledge and both are considered in some cases.Besides,feature reduction and some clustering methods are used to improve their performance.Design/methodology/approach-First,the performances of classification methods are evaluated for differential diagnosis of different diseases.Then,experts’knowledge is utilized to modify the Bayesian networks’structures.Analyses of the results show that using experts’knowledge is more effective than other algorithms for increasing the accuracy of Bayesian network classification.A total of ten different diseases are used for testing,taken from the Machine Learning Repository datasets of the University of California at Irvine(UCI).Findings-The proposed method improves both the computation time and accuracy of the classification methods used in this paper.Bayesian networks based on experts’knowledge achieve a maximum average accuracy of 87 percent,with a minimum standard deviation average of 0.04 over the sample datasets among all classification methods.Practical implications-The proposed methodology can be applied to perform disease differential diagnosis analysis.Originality/value-This study presents the usefulness of experts’knowledge in the diagnosis while proposing an adopted improvement method for classifications.Besides,the Bayesian network based on experts’knowledge is useful for different diseases neglected by previous papers. 展开更多
关键词 Bayesian network K2 algorithm experts’knowledge Classification methods Disease and cancer diagnosis
在线阅读 下载PDF
LLM-KE: An Ontology-Aware LLM Methodology for Military Domain Knowledge Extraction
2
作者 Yu Tao Ruopeng Yang +3 位作者 Yongqi Wen Yihao Zhong Kaige Jiao Xiaolei Gu 《Computers, Materials & Continua》 2026年第1期2045-2061,共17页
Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representati... Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development. 展开更多
关键词 knowledge extraction natural language processing knowledge graph large language model
在线阅读 下载PDF
Defect Identification Method of Power Grid Secondary Equipment Based on Coordination of Knowledge Graph and Bayesian Network Fusion
3
作者 Jun Xiong Peng Yang +1 位作者 Bohan Chen Zeming Chen 《Energy Engineering》 2026年第1期296-313,共18页
The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermo... The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency. 展开更多
关键词 knowledge graph Bayesian network secondary equipment defect identification
在线阅读 下载PDF
Automatic Detection of Health-Related Rumors: A Dual-Graph Collaborative Reasoning Framework Based on Causal Logic and Knowledge Graph
4
作者 Ning Wang Haoran Lyu Yuchen Fu 《Computers, Materials & Continua》 2026年第1期2163-2193,共31页
With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or p... With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media. 展开更多
关键词 Health rumor detection causal graph knowledge graph dual-graph fusion
在线阅读 下载PDF
Experts' Knowledge Fusion in Model-Based Diagnosis Based on Bayes Networks 被引量:5
5
作者 Deng Yong & Shi Wenkang School of Electronics & Information Technology, Shanghai Jiaotong University, Shanghai 200030, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第2期25-30,共6页
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ... In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge. 展开更多
关键词 Model-based diagnosis experts' knowledge Probabilistic assumption-based reasoning Bayes networks.
在线阅读 下载PDF
Knowledge expression and reasoning process in an expert system for welding procedure qualification 被引量:3
6
作者 张建勋 王红玉 宋旭 《China Welding》 EI CAS 2007年第4期77-82,共6页
After analyzing the welding procedure knowledge in Chinese national standards for welding procedure qualification of steel pressure vessel from the point of establishing expert system, it can be divided into five type... After analyzing the welding procedure knowledge in Chinese national standards for welding procedure qualification of steel pressure vessel from the point of establishing expert system, it can be divided into five types of knowledge, i. e. practice, definition, regularity, process and description knowledge. The knowledge expression methods are established according to the different type of welding procedure knowledge. The reasoning process based on rule is adopted. And the reasoning engine is embedded among objects integrated with the knowledge base. 展开更多
关键词 expert system procedure qualification knowledge base
在线阅读 下载PDF
Prioritizing sustainable development goals and linking them to ecosystem services:A global expert’s knowledge evaluation 被引量:13
7
作者 Siqi Yang Wenwu Zhao +3 位作者 Yanxu Liu Francesco Cherubini Bojie Fu Paulo Pereira 《Geography and Sustainability》 2020年第4期321-330,共10页
The implementation of strategies to achieve the Sustainable Development Goals(SDGs)is frequently hindered by potential trade-offs between priorities for either environmental protection or human well-being.However,ecos... The implementation of strategies to achieve the Sustainable Development Goals(SDGs)is frequently hindered by potential trade-offs between priorities for either environmental protection or human well-being.However,ecosystem services(ES)-based solutions can offer possible co-benefits for SDGs implementation that are often overlooked or underexploited.In this study,we cover this gap and investigate how experts from different countries value the SDGs and relate them with ES.A total of 66 countries participated to the survey,and answers were grouped into three macro-regions:Asia;Europe,North America,and Oceania(ENO);Latin America,Caribbean and Africa(LA).Results show that the most prioritized SDGs in the three macro-regions are usually those related to essential material needs and environmental conditions,such as SDG2(Zero Hunger),SDG1(No Poverty),and SDG6(Clean Water).At a global scale,the number of prioritized synergies between SDGs and ES largely exceeded trade-offs.The highest amount of synergies was observed for SDG1(No Poverty),mainly with SDG2,SDG3(Good Health),SDG5(Gender Equality),and SDG8(Economic Growth).Other major synergies among SDGs include SDG14-15(Life below water-Life on land),SDG5-10(Gender Equity-Reduced Inequality),and SDG1-2(No poverty-Zero Hunger).At a global scale,SDG15,SDG13,SDG14,and SDG6 were closely related to ES like climate regulation,freshwater,food,water purification,biodiversity,and education.SDG11(Sustainable Cities)and SDG3 were also relevant in Asia and in LA,respectively.Overall,this study shows the potential to couple future policies that can implement SDGs’strategies while adopting ES-based solutions in different regions of the world. 展开更多
关键词 Sustainable development goals(SDGs) Ecosystem services PRIORITY expert’s knowledge Network analysis
在线阅读 下载PDF
Construction of a Maritime Knowledge Graph Using GraphRAG for Entity and Relationship Extraction from Maritime Documents 被引量:1
8
作者 Yi Han Tao Yang +2 位作者 Meng Yuan Pinghua Hu Chen Li 《Journal of Computer and Communications》 2025年第2期68-93,共26页
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi... In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making. 展开更多
关键词 Maritime knowledge Graph GraphRAG Entity and Relationship Extraction Document Management
在线阅读 下载PDF
Expert knowledge maps for knowledge management: a case study inTraditional Chinese Medicine research 被引量:3
9
作者 Meng Cui Shuo Yang +3 位作者 Tong Yu Ce Yang Yonghong Gao Haiyan Zhu 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2013年第5期698-702,共5页
OBJECTIVE:To design a model to capture information on the state and trends of knowledge creation,at both an individual and an organizational level,in order to enhance knowledge management.METHODS:We designed a graph-t... OBJECTIVE:To design a model to capture information on the state and trends of knowledge creation,at both an individual and an organizational level,in order to enhance knowledge management.METHODS:We designed a graph-theoretic knowledge model,the expert knowledge map(EKM),based on literature-based annotation.A case study in the domain of Traditional Chinese Medicine research was used to illustrate the usefulness of the model.RESULTS:The EKM successfully captured various aspects of knowledge and enhanced knowledge management within the case-study organization through the provision of knowledge graphs,expert graphs,and expert-knowledge biography.CONCLUSION:Our model could help to reveal thehot topics,trends,and products of the research done by an organization.It can potentially be used to facilitate knowledge learning,sharing and decision-making among researchers,academicians,students,and administrators of organizations. 展开更多
关键词 Medicine Chinese traditional Information retrieval knowledge management knowledge element expert knowledge map
原文传递
Expert Knowledge-Based Apparel Recommendation Question and Answer System 被引量:1
10
作者 LIU Xun SHI Youqun +1 位作者 LUO Xin ZHU Guoxue 《Journal of Donghua University(English Edition)》 CAS 2022年第1期55-64,共10页
Aiming at the lack of professional knowledge to guide apparel recommendation,an apparel recommendation method based on image design expert knowledge has been proposed.Then,apparel recommendation knowledge graphs have ... Aiming at the lack of professional knowledge to guide apparel recommendation,an apparel recommendation method based on image design expert knowledge has been proposed.Then,apparel recommendation knowledge graphs have been created and a apparel recommendation question and answer(Q&A)system has been designed and implemented.The question templates in the apparel recommendation domain were defined,the task of recognizing the named entities of question sentences was completed by the Bi-directional encoder representations from transformer-Bi-directional long short-term memory-conditional random field(BERT-BiLSTM-CRF)model,and the question template with the highest matching degree to the user’s question was obtained by using term frequency-inverse document frequency(TF-IDF)algorithm.The corresponding cypher graph database query statement was generated to retrieve the knowledge graph for answers,and iFLYTEK’s voice application programming interface(API)was called to implement the Q&A.The experimental results have shown that the Q&A system has a high accuracy rate and application value in the field of apparel recommendations. 展开更多
关键词 expert knowledge apparel recommendation knowledge graph question and answer(Q&A)system speech recognition
在线阅读 下载PDF
Impact of family history of breast disease on knowledge,attitudes,and breast cancer preventive practices among reproductive-age females 被引量:1
11
作者 Melaku Mekonnen Agidew Niguss Cherie +2 位作者 Zemene Damtie Bezawit Adane Girma Derso 《World Journal of Clinical Oncology》 2025年第4期109-118,共10页
BACKGROUND Breast cancer is one of the most prevalent causes of morbidity and mortality worldwide,presenting an increasing public health challenge,particularly in lowincome and middle-income countries.However,data on ... BACKGROUND Breast cancer is one of the most prevalent causes of morbidity and mortality worldwide,presenting an increasing public health challenge,particularly in lowincome and middle-income countries.However,data on the knowledge,attitudes,and preventive practices regarding breast cancer and the associated factors among females in Wollo,Ethiopia,remain limited.AIM To assess the impact of family history(FH)of breast disease on knowledge,attitudes,and breast cancer preventive practices among reproductive-age females.METHODS A community-based cross-sectional study was conducted in May and June 2022 in Northeast Ethiopia and involved 143 reproductive-age females with FH of breast diseases and 209 without such a history.We selected participants using the systematic random sampling technique.We analyzed the data using Statistical Package for Social Science version 25 software,and logistic regression analysis was employed to determine odds ratios for variable associations,with statistical significance set at P<0.05.RESULTS Among participants with FH of breast diseases,the levels of knowledge,attitudes,and preventive practices were found to be 83.9%[95%confidence interval(CI):77.9-89.9],49.0%(95%CI:40.8-57.1),and 74.1%(95%CI:66.9-81.3),respectively.In contrast,among those without FH of breast diseases,these levels were significantly decreased to 10.5%(95%CI:6.4-14.7),32.1%(95%CI:25.7-38.4),and 16.7%(95%CI:11.7-21.8),respectively.This study also indicated that knowledge,attitudes,and preventive practices related to breast cancer are significantly higher among participants with FH of breast diseases compared to those without HF breast diseases.CONCLUSION Educational status,monthly income,and community health insurance were identified as significant factors associated with the levels of knowledge,attitudes,and preventive practices regarding breast cancer among reproductive-age females. 展开更多
关键词 Breast cancer Reproductive age knowledge ATTITUDE Practice Ethiopia
暂未订购
Methodology,progress and challenges of geoscience knowledge graph in International Big Science Program of Deep-Time Digital Earth 被引量:2
12
作者 ZHU Yunqiang WANG Qiang +9 位作者 WANG Shu SUN Kai WANG Xinbing LV Hairong HU Xiumian ZHANG Jie WANG Bin QIU Qinjun YANG Jie ZHOU Chenghu 《Journal of Geographical Sciences》 2025年第5期1132-1156,共25页
Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate... Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate prediction,natural resource exploration,and sustainable planetary stewardship.To advance Deep-time Earth research in the era of big data and artificial intelligence,the International Union of Geological Sciences initiated the“Deeptime Digital Earth International Big Science Program”(DDE)in 2019.At the core of this ambitious program lies the development of geoscience knowledge graphs,serving as a transformative knowledge infrastructure that enables the integration,sharing,mining,and analysis of heterogeneous geoscience big data.The DDE knowledge graph initiative has made significant strides in three critical dimensions:(1)establishing a unified knowledge structure across geoscience disciplines that ensures consistent representation of geological entities and their interrelationships through standardized ontologies and semantic frameworks;(2)developing a robust and scalable software infrastructure capable of supporting both expert-driven and machine-assisted knowledge engineering for large-scale graph construction and management;(3)implementing a comprehensive three-tiered architecture encompassing basic,discipline-specific,and application-oriented knowledge graphs,spanning approximately 20 geoscience disciplines.Through its open knowledge framework and international collaborative network,this initiative has fostered multinational research collaborations,establishing a robust foundation for next-generation geoscience research while propelling the discipline toward FAIR(Findable,Accessible,Interoperable,Reusable)data practices in deep-time Earth systems research. 展开更多
关键词 deep-time Earth geoscience knowledge graph Deep-time Digital Earth International Big Science Program
原文传递
TCMKD: From ancient wisdom to modern insights-A comprehensive platform for traditional Chinese medicine knowledge discovery 被引量:1
13
作者 Wenke Xiao Mengqing Zhang +12 位作者 Danni Zhao Fanbo Meng Qiang Tang Lianjiang Hu Hongguo Chen Yixi Xu Qianqian Tian Mingrui Li Guiyang Zhang Liang Leng Shilin Chen Chi Song Wei Chen 《Journal of Pharmaceutical Analysis》 2025年第6期1390-1402,共13页
Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challeng... Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challenges related to data standardization,completeness,and accuracy,primarily due to the decen-tralized distribution of TCM resources.To address these issues,we developed a platform for TCM knowledge discovery(TCMKD,https://cbcb.cdutcm.edu.cn/TCMKD/).Seven types of data,including syndromes,formulas,Chinese patent drugs(CPDs),Chinese medicinal materials(CMMs),ingredients,targets,and diseases,were manually proofread and consolidated within TCMKD.To strengthen the integration of TCM with modern medicine,TCMKD employs analytical methods such as TCM data mining,enrichment analysis,and network localization and separation.These tools help elucidate the molecular-level commonalities between TCM and contemporary scientific insights.In addition to its analytical capabilities,a quick question and answer(Q&A)system is also embedded within TCMKD to query the database efficiently,thereby improving the interactivity of the platform.The platform also provides a TCM text annotation tool,offering a simple and efficient method for TCM text mining.Overall,TCMKD not only has the potential to become a pivotal repository for TCM,delving into the pharmaco-logical foundations of TCM treatments,but its flexible embedded tools and algorithms can also be applied to the study of other traditional medical systems,extending beyond just TCM. 展开更多
关键词 Traditional Chinese medicine Data mining knowledge graph Network visualization Network analysis
暂未订购
A Deep-Learning-Based Method for Interpreting Distribution and Difference Knowledge from Raster Topographic Maps 被引量:1
14
作者 PAN Yalan TI Peng +1 位作者 LI Mingyao LI Zhilin 《Journal of Geodesy and Geoinformation Science》 2025年第2期21-36,共16页
Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and di... Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information. 展开更多
关键词 raster topographic maps geographic feature knowledge intelligent interpretation deep learning
在线阅读 下载PDF
Knowledge-Empowered,Collaborative,and Co-Evolving AI Models:The Post-LLM Roadmap 被引量:1
15
作者 Fei Wu Tao Shen +17 位作者 Thomas Back Jingyuan Chen Gang Huang Yaochu Jin Kun Kuang Mengze Li Cewu Lu Jiaxu Miao Yongwei Wang Ying Wei Fan Wu Junchi Yan Hongxia Yang Yi Yang Shengyu Zhang Zhou Zhao Yueting Zhuang Yunhe Pan 《Engineering》 2025年第1期87-100,共14页
Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have in... Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific accuracy.To address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model co-evolution.First,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge prompting.Second,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge injection.Third,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual learning.We illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various domains.We conclude by outlining future pathways for further advancement and applications. 展开更多
关键词 Artificial intelligence Large language models knowledge empowerment Model collaboration Model co-evolution
在线阅读 下载PDF
MixerKT:A Knowledge Tracing Model Based on Pure MLP Architecture
16
作者 Jun Wang Mingjie Wang +3 位作者 Zijie Li Ken Chen Jiatian Mei Shu Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期485-498,共14页
In the field of intelligent education,the integration of artificial intelligence,especially deep learning technologies,has garnered significant attention.Knowledge tracing(KT)plays a pivotal role in this field by pred... In the field of intelligent education,the integration of artificial intelligence,especially deep learning technologies,has garnered significant attention.Knowledge tracing(KT)plays a pivotal role in this field by predicting students’future performance through the analysis of historical interaction data,thereby assisting educators in evaluating knowledgemastery and tailoring instructional strategies.Traditional knowledge tracingmethods,largely based on Recurrent Neural Networks(RNNs)and Transformer models,primarily focus on capturing long-term interaction patterns in sequential data.However,these models may neglect crucial short-term dynamics and other relevant features.This paper introduces a novel approach to knowledge tracing by leveraging a pure Multilayer Perceptron(MLP)architecture.We proposeMixerKT,a knowledge tracing model based on theHyperMixer framework,which uniquely integrates global and localMixer feature extractors.This architecture enables more effective extraction of both long-terminteraction trends and recent learning behaviors,addressing limitations in currentmodels thatmay overlook these key aspects.Empirical evaluations on twowidely-used datasets,ASSIS Tments2009 and Algebra2005,demonstrate that MixerKT consistently outperforms several state-of-the-art models,including DKT,SAKT,and Separated Self-Attentive Neural Knowledge Tracing(SAINT).Specifically,MixerKT achieves higher prediction accuracy,highlighting its effectiveness in capturing the nuances of learners’knowledge states.These results indicate that our model provides a more comprehensive representation of student learning patterns,enhancing the ability to predict future performance with greater precision. 展开更多
关键词 knowledge tracing multilayer perceptron channel mixer sequence mixer
在线阅读 下载PDF
KG-CNNDTI:a knowledge graph-enhanced prediction model for drug-target interactions and application in virtual screening of natural products against Alzheimer’s disease 被引量:1
17
作者 Chengyuan Yue Baiyu Chen +7 位作者 Long Chen Le Xiong Changda Gong Ze Wang Guixia Liu Weihua Li Rui Wang Yun Tang 《Chinese Journal of Natural Medicines》 2025年第11期1283-1292,共10页
Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI pre... Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays. 展开更多
关键词 Drug-target interactions prediction knowledge graph Drug screening Alzheimer’s disease Natural products
原文传递
Forecasting landslide deformation by integrating domain knowledge into interpretable deep learning considering spatiotemporal correlations 被引量:1
18
作者 Zhengjing Ma Gang Mei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期960-982,共23页
Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predict... Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors. 展开更多
关键词 GEOHAZARDS Landslide deformation forecasting Landslide predictability knowledge infused deep learning interpretable machine learning Attention mechanism Transformer
在线阅读 下载PDF
Enhance Human Rights Studies and Construct China’s Autonomous Knowledge System of Human Rights 被引量:1
19
作者 Baimachilin LIU Haile(Translated) 《The Journal of Human Rights》 2025年第1期3-9,共7页
Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realit... Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realities and fine traditional culture),root ourselves in Chinese soil,carry forward the Chinese cultural heritage,and strengthen the academic foundation.We should accelerate the building of an independent knowledge system for Chinese philosophy and social sciences,and formulate original concepts and develop systems of academic discipline,research and discourse,drawing on China’s rich experience of advancing human rights.In the face of changes of a magnitude not seen in a century,in the historic process of advancing the great rejuvenation of the Chinese nation on all fronts through Chinese modernization,we should and must strengthen our theoretical self-consciousness and confidence in the path of Chinese modernization.We need to enhance human rights research,develop the human rights theoretical system and paradigm that are based on Chinese realities and express Chinese voice,and an independent Chinese knowledge system for human rights. 展开更多
关键词 theoretical self consciousness formulate original concepts deve cultural heritage MARXISM autonomous knowledge system human rights Chinese realities basic tenets marxism
原文传递
Assessing healthcare workers’knowledge and confidence in the diagnosis,management and prevention of Monkeypox
20
作者 Epipode Ntawuyamara Thierry Ingabire +3 位作者 Innocent Yandemye Polycarpe Ndayikeza Bina Bhandari Yan-Hua Liang 《World Journal of Clinical Cases》 SCIE 2025年第1期38-47,共10页
BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confid... BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confidence in the diagnosis and management of Mpox.METHODS We conducted a cross-sectional study via an online survey designed mainly from the World Health Organization course distributed among Burundi HCWs from June-July 2023.The questionnaire comprises 8 socioprofessional-related questions,22 questions about Mpox disease knowledge,and 3 questions to assess confidence in Mpox diagnosis and management.The data were analyzed via SPSS software version 25.0.A P value<0.05 was considered to indicate statistical significance.RESULTS The study sample comprised 471 HCWs who were mainly medical doctors(63.9%)and nurses(30.1%).None of the 22 questions concerning Mpox knowledge had at least 50%correct responses.A very low number of HCWs(17.4%)knew that Mpox has a vaccine.The confidence level to diagnose(21.20%),treat(18.00%)or prevent(23.30%)Mpox was low among HCWs.The confidence level in the diagnosis of Mpox was associated with the HCWs’age(P value=0.009),sex(P value<0.001),work experience(P value=0.002),and residence(P value<0.001).The confidence level to treat Mpox was significantly associated with the HCWs’age(P value=0.050),sex(P value<0.001),education(P value=0.033)and occupation(P value=0.005).The confidence level to prevent Mpox was associated with the HCWs’education(P value<0.001),work experience(P value=0.002),residence(P value<0.001)and type of work institution(P value=0.003).CONCLUSION This study revealed that HCWs have the lowest level of knowledge regarding Mpox and a lack of confidence in the ability to diagnose,treat or prevent it.There is an urgent need to organize continuing medical education programs on Mpox epidemiology and preparedness for Burundi HCWs.We encourage future researchers to assess potential hesitancy toward Mpox vaccination and its associated factors. 展开更多
关键词 MONKEYPOX Public health emergency of international concern Healthcare workers EPIDEMIC PREPAREDNESS knowledge CONFIDENCE
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部