Purpose-This study aims to differential diagnosis of some diseases using classification methods to support effective medical treatment.For this purpose,different classification methods based on data,experts’knowledge...Purpose-This study aims to differential diagnosis of some diseases using classification methods to support effective medical treatment.For this purpose,different classification methods based on data,experts’knowledge and both are considered in some cases.Besides,feature reduction and some clustering methods are used to improve their performance.Design/methodology/approach-First,the performances of classification methods are evaluated for differential diagnosis of different diseases.Then,experts’knowledge is utilized to modify the Bayesian networks’structures.Analyses of the results show that using experts’knowledge is more effective than other algorithms for increasing the accuracy of Bayesian network classification.A total of ten different diseases are used for testing,taken from the Machine Learning Repository datasets of the University of California at Irvine(UCI).Findings-The proposed method improves both the computation time and accuracy of the classification methods used in this paper.Bayesian networks based on experts’knowledge achieve a maximum average accuracy of 87 percent,with a minimum standard deviation average of 0.04 over the sample datasets among all classification methods.Practical implications-The proposed methodology can be applied to perform disease differential diagnosis analysis.Originality/value-This study presents the usefulness of experts’knowledge in the diagnosis while proposing an adopted improvement method for classifications.Besides,the Bayesian network based on experts’knowledge is useful for different diseases neglected by previous papers.展开更多
Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representati...Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.展开更多
The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermo...The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.展开更多
With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or p...With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media.展开更多
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
After analyzing the welding procedure knowledge in Chinese national standards for welding procedure qualification of steel pressure vessel from the point of establishing expert system, it can be divided into five type...After analyzing the welding procedure knowledge in Chinese national standards for welding procedure qualification of steel pressure vessel from the point of establishing expert system, it can be divided into five types of knowledge, i. e. practice, definition, regularity, process and description knowledge. The knowledge expression methods are established according to the different type of welding procedure knowledge. The reasoning process based on rule is adopted. And the reasoning engine is embedded among objects integrated with the knowledge base.展开更多
The implementation of strategies to achieve the Sustainable Development Goals(SDGs)is frequently hindered by potential trade-offs between priorities for either environmental protection or human well-being.However,ecos...The implementation of strategies to achieve the Sustainable Development Goals(SDGs)is frequently hindered by potential trade-offs between priorities for either environmental protection or human well-being.However,ecosystem services(ES)-based solutions can offer possible co-benefits for SDGs implementation that are often overlooked or underexploited.In this study,we cover this gap and investigate how experts from different countries value the SDGs and relate them with ES.A total of 66 countries participated to the survey,and answers were grouped into three macro-regions:Asia;Europe,North America,and Oceania(ENO);Latin America,Caribbean and Africa(LA).Results show that the most prioritized SDGs in the three macro-regions are usually those related to essential material needs and environmental conditions,such as SDG2(Zero Hunger),SDG1(No Poverty),and SDG6(Clean Water).At a global scale,the number of prioritized synergies between SDGs and ES largely exceeded trade-offs.The highest amount of synergies was observed for SDG1(No Poverty),mainly with SDG2,SDG3(Good Health),SDG5(Gender Equality),and SDG8(Economic Growth).Other major synergies among SDGs include SDG14-15(Life below water-Life on land),SDG5-10(Gender Equity-Reduced Inequality),and SDG1-2(No poverty-Zero Hunger).At a global scale,SDG15,SDG13,SDG14,and SDG6 were closely related to ES like climate regulation,freshwater,food,water purification,biodiversity,and education.SDG11(Sustainable Cities)and SDG3 were also relevant in Asia and in LA,respectively.Overall,this study shows the potential to couple future policies that can implement SDGs’strategies while adopting ES-based solutions in different regions of the world.展开更多
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi...In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.展开更多
OBJECTIVE:To design a model to capture information on the state and trends of knowledge creation,at both an individual and an organizational level,in order to enhance knowledge management.METHODS:We designed a graph-t...OBJECTIVE:To design a model to capture information on the state and trends of knowledge creation,at both an individual and an organizational level,in order to enhance knowledge management.METHODS:We designed a graph-theoretic knowledge model,the expert knowledge map(EKM),based on literature-based annotation.A case study in the domain of Traditional Chinese Medicine research was used to illustrate the usefulness of the model.RESULTS:The EKM successfully captured various aspects of knowledge and enhanced knowledge management within the case-study organization through the provision of knowledge graphs,expert graphs,and expert-knowledge biography.CONCLUSION:Our model could help to reveal thehot topics,trends,and products of the research done by an organization.It can potentially be used to facilitate knowledge learning,sharing and decision-making among researchers,academicians,students,and administrators of organizations.展开更多
Aiming at the lack of professional knowledge to guide apparel recommendation,an apparel recommendation method based on image design expert knowledge has been proposed.Then,apparel recommendation knowledge graphs have ...Aiming at the lack of professional knowledge to guide apparel recommendation,an apparel recommendation method based on image design expert knowledge has been proposed.Then,apparel recommendation knowledge graphs have been created and a apparel recommendation question and answer(Q&A)system has been designed and implemented.The question templates in the apparel recommendation domain were defined,the task of recognizing the named entities of question sentences was completed by the Bi-directional encoder representations from transformer-Bi-directional long short-term memory-conditional random field(BERT-BiLSTM-CRF)model,and the question template with the highest matching degree to the user’s question was obtained by using term frequency-inverse document frequency(TF-IDF)algorithm.The corresponding cypher graph database query statement was generated to retrieve the knowledge graph for answers,and iFLYTEK’s voice application programming interface(API)was called to implement the Q&A.The experimental results have shown that the Q&A system has a high accuracy rate and application value in the field of apparel recommendations.展开更多
BACKGROUND Breast cancer is one of the most prevalent causes of morbidity and mortality worldwide,presenting an increasing public health challenge,particularly in lowincome and middle-income countries.However,data on ...BACKGROUND Breast cancer is one of the most prevalent causes of morbidity and mortality worldwide,presenting an increasing public health challenge,particularly in lowincome and middle-income countries.However,data on the knowledge,attitudes,and preventive practices regarding breast cancer and the associated factors among females in Wollo,Ethiopia,remain limited.AIM To assess the impact of family history(FH)of breast disease on knowledge,attitudes,and breast cancer preventive practices among reproductive-age females.METHODS A community-based cross-sectional study was conducted in May and June 2022 in Northeast Ethiopia and involved 143 reproductive-age females with FH of breast diseases and 209 without such a history.We selected participants using the systematic random sampling technique.We analyzed the data using Statistical Package for Social Science version 25 software,and logistic regression analysis was employed to determine odds ratios for variable associations,with statistical significance set at P<0.05.RESULTS Among participants with FH of breast diseases,the levels of knowledge,attitudes,and preventive practices were found to be 83.9%[95%confidence interval(CI):77.9-89.9],49.0%(95%CI:40.8-57.1),and 74.1%(95%CI:66.9-81.3),respectively.In contrast,among those without FH of breast diseases,these levels were significantly decreased to 10.5%(95%CI:6.4-14.7),32.1%(95%CI:25.7-38.4),and 16.7%(95%CI:11.7-21.8),respectively.This study also indicated that knowledge,attitudes,and preventive practices related to breast cancer are significantly higher among participants with FH of breast diseases compared to those without HF breast diseases.CONCLUSION Educational status,monthly income,and community health insurance were identified as significant factors associated with the levels of knowledge,attitudes,and preventive practices regarding breast cancer among reproductive-age females.展开更多
Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate...Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate prediction,natural resource exploration,and sustainable planetary stewardship.To advance Deep-time Earth research in the era of big data and artificial intelligence,the International Union of Geological Sciences initiated the“Deeptime Digital Earth International Big Science Program”(DDE)in 2019.At the core of this ambitious program lies the development of geoscience knowledge graphs,serving as a transformative knowledge infrastructure that enables the integration,sharing,mining,and analysis of heterogeneous geoscience big data.The DDE knowledge graph initiative has made significant strides in three critical dimensions:(1)establishing a unified knowledge structure across geoscience disciplines that ensures consistent representation of geological entities and their interrelationships through standardized ontologies and semantic frameworks;(2)developing a robust and scalable software infrastructure capable of supporting both expert-driven and machine-assisted knowledge engineering for large-scale graph construction and management;(3)implementing a comprehensive three-tiered architecture encompassing basic,discipline-specific,and application-oriented knowledge graphs,spanning approximately 20 geoscience disciplines.Through its open knowledge framework and international collaborative network,this initiative has fostered multinational research collaborations,establishing a robust foundation for next-generation geoscience research while propelling the discipline toward FAIR(Findable,Accessible,Interoperable,Reusable)data practices in deep-time Earth systems research.展开更多
Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challeng...Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challenges related to data standardization,completeness,and accuracy,primarily due to the decen-tralized distribution of TCM resources.To address these issues,we developed a platform for TCM knowledge discovery(TCMKD,https://cbcb.cdutcm.edu.cn/TCMKD/).Seven types of data,including syndromes,formulas,Chinese patent drugs(CPDs),Chinese medicinal materials(CMMs),ingredients,targets,and diseases,were manually proofread and consolidated within TCMKD.To strengthen the integration of TCM with modern medicine,TCMKD employs analytical methods such as TCM data mining,enrichment analysis,and network localization and separation.These tools help elucidate the molecular-level commonalities between TCM and contemporary scientific insights.In addition to its analytical capabilities,a quick question and answer(Q&A)system is also embedded within TCMKD to query the database efficiently,thereby improving the interactivity of the platform.The platform also provides a TCM text annotation tool,offering a simple and efficient method for TCM text mining.Overall,TCMKD not only has the potential to become a pivotal repository for TCM,delving into the pharmaco-logical foundations of TCM treatments,but its flexible embedded tools and algorithms can also be applied to the study of other traditional medical systems,extending beyond just TCM.展开更多
Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and di...Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.展开更多
Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have in...Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific accuracy.To address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model co-evolution.First,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge prompting.Second,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge injection.Third,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual learning.We illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various domains.We conclude by outlining future pathways for further advancement and applications.展开更多
In the field of intelligent education,the integration of artificial intelligence,especially deep learning technologies,has garnered significant attention.Knowledge tracing(KT)plays a pivotal role in this field by pred...In the field of intelligent education,the integration of artificial intelligence,especially deep learning technologies,has garnered significant attention.Knowledge tracing(KT)plays a pivotal role in this field by predicting students’future performance through the analysis of historical interaction data,thereby assisting educators in evaluating knowledgemastery and tailoring instructional strategies.Traditional knowledge tracingmethods,largely based on Recurrent Neural Networks(RNNs)and Transformer models,primarily focus on capturing long-term interaction patterns in sequential data.However,these models may neglect crucial short-term dynamics and other relevant features.This paper introduces a novel approach to knowledge tracing by leveraging a pure Multilayer Perceptron(MLP)architecture.We proposeMixerKT,a knowledge tracing model based on theHyperMixer framework,which uniquely integrates global and localMixer feature extractors.This architecture enables more effective extraction of both long-terminteraction trends and recent learning behaviors,addressing limitations in currentmodels thatmay overlook these key aspects.Empirical evaluations on twowidely-used datasets,ASSIS Tments2009 and Algebra2005,demonstrate that MixerKT consistently outperforms several state-of-the-art models,including DKT,SAKT,and Separated Self-Attentive Neural Knowledge Tracing(SAINT).Specifically,MixerKT achieves higher prediction accuracy,highlighting its effectiveness in capturing the nuances of learners’knowledge states.These results indicate that our model provides a more comprehensive representation of student learning patterns,enhancing the ability to predict future performance with greater precision.展开更多
Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI pre...Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays.展开更多
Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predict...Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors.展开更多
Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realit...Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realities and fine traditional culture),root ourselves in Chinese soil,carry forward the Chinese cultural heritage,and strengthen the academic foundation.We should accelerate the building of an independent knowledge system for Chinese philosophy and social sciences,and formulate original concepts and develop systems of academic discipline,research and discourse,drawing on China’s rich experience of advancing human rights.In the face of changes of a magnitude not seen in a century,in the historic process of advancing the great rejuvenation of the Chinese nation on all fronts through Chinese modernization,we should and must strengthen our theoretical self-consciousness and confidence in the path of Chinese modernization.We need to enhance human rights research,develop the human rights theoretical system and paradigm that are based on Chinese realities and express Chinese voice,and an independent Chinese knowledge system for human rights.展开更多
BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confid...BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confidence in the diagnosis and management of Mpox.METHODS We conducted a cross-sectional study via an online survey designed mainly from the World Health Organization course distributed among Burundi HCWs from June-July 2023.The questionnaire comprises 8 socioprofessional-related questions,22 questions about Mpox disease knowledge,and 3 questions to assess confidence in Mpox diagnosis and management.The data were analyzed via SPSS software version 25.0.A P value<0.05 was considered to indicate statistical significance.RESULTS The study sample comprised 471 HCWs who were mainly medical doctors(63.9%)and nurses(30.1%).None of the 22 questions concerning Mpox knowledge had at least 50%correct responses.A very low number of HCWs(17.4%)knew that Mpox has a vaccine.The confidence level to diagnose(21.20%),treat(18.00%)or prevent(23.30%)Mpox was low among HCWs.The confidence level in the diagnosis of Mpox was associated with the HCWs’age(P value=0.009),sex(P value<0.001),work experience(P value=0.002),and residence(P value<0.001).The confidence level to treat Mpox was significantly associated with the HCWs’age(P value=0.050),sex(P value<0.001),education(P value=0.033)and occupation(P value=0.005).The confidence level to prevent Mpox was associated with the HCWs’education(P value<0.001),work experience(P value=0.002),residence(P value<0.001)and type of work institution(P value=0.003).CONCLUSION This study revealed that HCWs have the lowest level of knowledge regarding Mpox and a lack of confidence in the ability to diagnose,treat or prevent it.There is an urgent need to organize continuing medical education programs on Mpox epidemiology and preparedness for Burundi HCWs.We encourage future researchers to assess potential hesitancy toward Mpox vaccination and its associated factors.展开更多
文摘Purpose-This study aims to differential diagnosis of some diseases using classification methods to support effective medical treatment.For this purpose,different classification methods based on data,experts’knowledge and both are considered in some cases.Besides,feature reduction and some clustering methods are used to improve their performance.Design/methodology/approach-First,the performances of classification methods are evaluated for differential diagnosis of different diseases.Then,experts’knowledge is utilized to modify the Bayesian networks’structures.Analyses of the results show that using experts’knowledge is more effective than other algorithms for increasing the accuracy of Bayesian network classification.A total of ten different diseases are used for testing,taken from the Machine Learning Repository datasets of the University of California at Irvine(UCI).Findings-The proposed method improves both the computation time and accuracy of the classification methods used in this paper.Bayesian networks based on experts’knowledge achieve a maximum average accuracy of 87 percent,with a minimum standard deviation average of 0.04 over the sample datasets among all classification methods.Practical implications-The proposed methodology can be applied to perform disease differential diagnosis analysis.Originality/value-This study presents the usefulness of experts’knowledge in the diagnosis while proposing an adopted improvement method for classifications.Besides,the Bayesian network based on experts’knowledge is useful for different diseases neglected by previous papers.
文摘Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.
基金supported by the State Grid Southwest Branch Project“Research on Defect Diagnosis and Early Warning Technology of Relay Protection and Safety Automation Devices Based on Multi-Source Heterogeneous Defect Data”.
文摘The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.
基金funded by the Hunan Provincial Natural Science Foundation of China(Grant No.2025JJ70105)the Hunan Provincial College Students’Innovation and Entrepreneurship Training Program(Project No.S202411342056)The article processing charge(APC)was funded by the Project No.2025JJ70105.
文摘With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media.
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.
文摘After analyzing the welding procedure knowledge in Chinese national standards for welding procedure qualification of steel pressure vessel from the point of establishing expert system, it can be divided into five types of knowledge, i. e. practice, definition, regularity, process and description knowledge. The knowledge expression methods are established according to the different type of welding procedure knowledge. The reasoning process based on rule is adopted. And the reasoning engine is embedded among objects integrated with the knowledge base.
基金This work was supported by National Key R&D Program of China(Grant No.2017YFA0604700)National Natural Science Foundation of China(Grant No.4181101243)+2 种基金the Fundamental Research Funds for the Central UniversitiesFrancesco Cherubini was supported by Nor-wegian Research Council(Grant No.286773)Paulo Pereira was sup-ported by the European Social Fund project LINESAM(Grant No.09.3.3-LMT-K-712-01-0104).
文摘The implementation of strategies to achieve the Sustainable Development Goals(SDGs)is frequently hindered by potential trade-offs between priorities for either environmental protection or human well-being.However,ecosystem services(ES)-based solutions can offer possible co-benefits for SDGs implementation that are often overlooked or underexploited.In this study,we cover this gap and investigate how experts from different countries value the SDGs and relate them with ES.A total of 66 countries participated to the survey,and answers were grouped into three macro-regions:Asia;Europe,North America,and Oceania(ENO);Latin America,Caribbean and Africa(LA).Results show that the most prioritized SDGs in the three macro-regions are usually those related to essential material needs and environmental conditions,such as SDG2(Zero Hunger),SDG1(No Poverty),and SDG6(Clean Water).At a global scale,the number of prioritized synergies between SDGs and ES largely exceeded trade-offs.The highest amount of synergies was observed for SDG1(No Poverty),mainly with SDG2,SDG3(Good Health),SDG5(Gender Equality),and SDG8(Economic Growth).Other major synergies among SDGs include SDG14-15(Life below water-Life on land),SDG5-10(Gender Equity-Reduced Inequality),and SDG1-2(No poverty-Zero Hunger).At a global scale,SDG15,SDG13,SDG14,and SDG6 were closely related to ES like climate regulation,freshwater,food,water purification,biodiversity,and education.SDG11(Sustainable Cities)and SDG3 were also relevant in Asia and in LA,respectively.Overall,this study shows the potential to couple future policies that can implement SDGs’strategies while adopting ES-based solutions in different regions of the world.
文摘In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.
基金Supported by the Ministry of Science and Technology Support Projects(No.12116BAI14A21)
文摘OBJECTIVE:To design a model to capture information on the state and trends of knowledge creation,at both an individual and an organizational level,in order to enhance knowledge management.METHODS:We designed a graph-theoretic knowledge model,the expert knowledge map(EKM),based on literature-based annotation.A case study in the domain of Traditional Chinese Medicine research was used to illustrate the usefulness of the model.RESULTS:The EKM successfully captured various aspects of knowledge and enhanced knowledge management within the case-study organization through the provision of knowledge graphs,expert graphs,and expert-knowledge biography.CONCLUSION:Our model could help to reveal thehot topics,trends,and products of the research done by an organization.It can potentially be used to facilitate knowledge learning,sharing and decision-making among researchers,academicians,students,and administrators of organizations.
文摘Aiming at the lack of professional knowledge to guide apparel recommendation,an apparel recommendation method based on image design expert knowledge has been proposed.Then,apparel recommendation knowledge graphs have been created and a apparel recommendation question and answer(Q&A)system has been designed and implemented.The question templates in the apparel recommendation domain were defined,the task of recognizing the named entities of question sentences was completed by the Bi-directional encoder representations from transformer-Bi-directional long short-term memory-conditional random field(BERT-BiLSTM-CRF)model,and the question template with the highest matching degree to the user’s question was obtained by using term frequency-inverse document frequency(TF-IDF)algorithm.The corresponding cypher graph database query statement was generated to retrieve the knowledge graph for answers,and iFLYTEK’s voice application programming interface(API)was called to implement the Q&A.The experimental results have shown that the Q&A system has a high accuracy rate and application value in the field of apparel recommendations.
文摘BACKGROUND Breast cancer is one of the most prevalent causes of morbidity and mortality worldwide,presenting an increasing public health challenge,particularly in lowincome and middle-income countries.However,data on the knowledge,attitudes,and preventive practices regarding breast cancer and the associated factors among females in Wollo,Ethiopia,remain limited.AIM To assess the impact of family history(FH)of breast disease on knowledge,attitudes,and breast cancer preventive practices among reproductive-age females.METHODS A community-based cross-sectional study was conducted in May and June 2022 in Northeast Ethiopia and involved 143 reproductive-age females with FH of breast diseases and 209 without such a history.We selected participants using the systematic random sampling technique.We analyzed the data using Statistical Package for Social Science version 25 software,and logistic regression analysis was employed to determine odds ratios for variable associations,with statistical significance set at P<0.05.RESULTS Among participants with FH of breast diseases,the levels of knowledge,attitudes,and preventive practices were found to be 83.9%[95%confidence interval(CI):77.9-89.9],49.0%(95%CI:40.8-57.1),and 74.1%(95%CI:66.9-81.3),respectively.In contrast,among those without FH of breast diseases,these levels were significantly decreased to 10.5%(95%CI:6.4-14.7),32.1%(95%CI:25.7-38.4),and 16.7%(95%CI:11.7-21.8),respectively.This study also indicated that knowledge,attitudes,and preventive practices related to breast cancer are significantly higher among participants with FH of breast diseases compared to those without HF breast diseases.CONCLUSION Educational status,monthly income,and community health insurance were identified as significant factors associated with the levels of knowledge,attitudes,and preventive practices regarding breast cancer among reproductive-age females.
基金Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB0740000National Key Research and Development Program of China,No.2022YFB3904200,No.2022YFF0711601+1 种基金Key Project of Innovation LREIS,No.PI009National Natural Science Foundation of China,No.42471503。
文摘Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate prediction,natural resource exploration,and sustainable planetary stewardship.To advance Deep-time Earth research in the era of big data and artificial intelligence,the International Union of Geological Sciences initiated the“Deeptime Digital Earth International Big Science Program”(DDE)in 2019.At the core of this ambitious program lies the development of geoscience knowledge graphs,serving as a transformative knowledge infrastructure that enables the integration,sharing,mining,and analysis of heterogeneous geoscience big data.The DDE knowledge graph initiative has made significant strides in three critical dimensions:(1)establishing a unified knowledge structure across geoscience disciplines that ensures consistent representation of geological entities and their interrelationships through standardized ontologies and semantic frameworks;(2)developing a robust and scalable software infrastructure capable of supporting both expert-driven and machine-assisted knowledge engineering for large-scale graph construction and management;(3)implementing a comprehensive three-tiered architecture encompassing basic,discipline-specific,and application-oriented knowledge graphs,spanning approximately 20 geoscience disciplines.Through its open knowledge framework and international collaborative network,this initiative has fostered multinational research collaborations,establishing a robust foundation for next-generation geoscience research while propelling the discipline toward FAIR(Findable,Accessible,Interoperable,Reusable)data practices in deep-time Earth systems research.
基金supported by Natural Science Foundation of Sichuan,China(Grant No.:2024ZDZX0019).
文摘Traditional Chinese medicine(TCM)serves as a treasure trove of ancient knowledge,holding a crucial position in the medical field.However,the exploration of TCM's extensive information has been hindered by challenges related to data standardization,completeness,and accuracy,primarily due to the decen-tralized distribution of TCM resources.To address these issues,we developed a platform for TCM knowledge discovery(TCMKD,https://cbcb.cdutcm.edu.cn/TCMKD/).Seven types of data,including syndromes,formulas,Chinese patent drugs(CPDs),Chinese medicinal materials(CMMs),ingredients,targets,and diseases,were manually proofread and consolidated within TCMKD.To strengthen the integration of TCM with modern medicine,TCMKD employs analytical methods such as TCM data mining,enrichment analysis,and network localization and separation.These tools help elucidate the molecular-level commonalities between TCM and contemporary scientific insights.In addition to its analytical capabilities,a quick question and answer(Q&A)system is also embedded within TCMKD to query the database efficiently,thereby improving the interactivity of the platform.The platform also provides a TCM text annotation tool,offering a simple and efficient method for TCM text mining.Overall,TCMKD not only has the potential to become a pivotal repository for TCM,delving into the pharmaco-logical foundations of TCM treatments,but its flexible embedded tools and algorithms can also be applied to the study of other traditional medical systems,extending beyond just TCM.
基金Deep-time Digital Earth(DDE)Big Science Program(No.GJ-C03-SGF-2025-004)National Natural Science Foundation of China(No.42394063)Sichuan Science and Technology Program(No.2025ZNSFSC0325).
文摘Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.
基金supported in part by National Natural Science Foundation of China(62441605)。
文摘Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific accuracy.To address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model co-evolution.First,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge prompting.Second,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge injection.Third,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual learning.We illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various domains.We conclude by outlining future pathways for further advancement and applications.
基金supported by National Natural Science Foundation of China(Nos.62266054 and 62166050)Key Program of Fundamental Research Project of Yunnan Science and Technology Plan(No.202201AS070021)+2 种基金Yunnan Fundamental Research Projects(No.202401AT070122)Yunnan International Joint Research and Development Center of China-Laos-Thailand Educational Digitalization(No.202203AP140006)Scientific Research Foundation of Yunnan Provincial Department of Education(No.2024Y159).
文摘In the field of intelligent education,the integration of artificial intelligence,especially deep learning technologies,has garnered significant attention.Knowledge tracing(KT)plays a pivotal role in this field by predicting students’future performance through the analysis of historical interaction data,thereby assisting educators in evaluating knowledgemastery and tailoring instructional strategies.Traditional knowledge tracingmethods,largely based on Recurrent Neural Networks(RNNs)and Transformer models,primarily focus on capturing long-term interaction patterns in sequential data.However,these models may neglect crucial short-term dynamics and other relevant features.This paper introduces a novel approach to knowledge tracing by leveraging a pure Multilayer Perceptron(MLP)architecture.We proposeMixerKT,a knowledge tracing model based on theHyperMixer framework,which uniquely integrates global and localMixer feature extractors.This architecture enables more effective extraction of both long-terminteraction trends and recent learning behaviors,addressing limitations in currentmodels thatmay overlook these key aspects.Empirical evaluations on twowidely-used datasets,ASSIS Tments2009 and Algebra2005,demonstrate that MixerKT consistently outperforms several state-of-the-art models,including DKT,SAKT,and Separated Self-Attentive Neural Knowledge Tracing(SAINT).Specifically,MixerKT achieves higher prediction accuracy,highlighting its effectiveness in capturing the nuances of learners’knowledge states.These results indicate that our model provides a more comprehensive representation of student learning patterns,enhancing the ability to predict future performance with greater precision.
基金supported by the National Natural Science Foundation of China(Nos.82173746 and U23A20530)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission)。
文摘Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays.
基金supported by the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230685)the National Science Foundation of China(Grant No.42277161).
文摘Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors.
文摘Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,stressed that we should adhere to the“two integrations”(namely,integrating the basic tenets of Marxism with China’s specific realities and fine traditional culture),root ourselves in Chinese soil,carry forward the Chinese cultural heritage,and strengthen the academic foundation.We should accelerate the building of an independent knowledge system for Chinese philosophy and social sciences,and formulate original concepts and develop systems of academic discipline,research and discourse,drawing on China’s rich experience of advancing human rights.In the face of changes of a magnitude not seen in a century,in the historic process of advancing the great rejuvenation of the Chinese nation on all fronts through Chinese modernization,we should and must strengthen our theoretical self-consciousness and confidence in the path of Chinese modernization.We need to enhance human rights research,develop the human rights theoretical system and paradigm that are based on Chinese realities and express Chinese voice,and an independent Chinese knowledge system for human rights.
文摘BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confidence in the diagnosis and management of Mpox.METHODS We conducted a cross-sectional study via an online survey designed mainly from the World Health Organization course distributed among Burundi HCWs from June-July 2023.The questionnaire comprises 8 socioprofessional-related questions,22 questions about Mpox disease knowledge,and 3 questions to assess confidence in Mpox diagnosis and management.The data were analyzed via SPSS software version 25.0.A P value<0.05 was considered to indicate statistical significance.RESULTS The study sample comprised 471 HCWs who were mainly medical doctors(63.9%)and nurses(30.1%).None of the 22 questions concerning Mpox knowledge had at least 50%correct responses.A very low number of HCWs(17.4%)knew that Mpox has a vaccine.The confidence level to diagnose(21.20%),treat(18.00%)or prevent(23.30%)Mpox was low among HCWs.The confidence level in the diagnosis of Mpox was associated with the HCWs’age(P value=0.009),sex(P value<0.001),work experience(P value=0.002),and residence(P value<0.001).The confidence level to treat Mpox was significantly associated with the HCWs’age(P value=0.050),sex(P value<0.001),education(P value=0.033)and occupation(P value=0.005).The confidence level to prevent Mpox was associated with the HCWs’education(P value<0.001),work experience(P value=0.002),residence(P value<0.001)and type of work institution(P value=0.003).CONCLUSION This study revealed that HCWs have the lowest level of knowledge regarding Mpox and a lack of confidence in the ability to diagnose,treat or prevent it.There is an urgent need to organize continuing medical education programs on Mpox epidemiology and preparedness for Burundi HCWs.We encourage future researchers to assess potential hesitancy toward Mpox vaccination and its associated factors.