Benchmark experiments are indispensable for the development of neutron nuclear data evaluation libraries.Given the lack of domestic benchmarking of nuclear data in the fission energy region,this study developed a neut...Benchmark experiments are indispensable for the development of neutron nuclear data evaluation libraries.Given the lack of domestic benchmarking of nuclear data in the fission energy region,this study developed a neutron leakage spectrum measurement system using a spherical sample based on the^(252)Cf spontaneous fission source.The EJ309 detector(for highenergy measurements)and CLYC detector(for low-energy measurements)were combined to measure the time-of-flight spectrum using theγtagging method.To assess the performance of the system,the time-of-flight spectrum without a sample was measured first.The experimental spectra were consistent with those simulated using the Monte Carlo method and the standard^(252)Cf spectrum from ISO:8529-1.This demonstrates that the system can effectively measure the neutron events in the 0.15-8.0 MeV range.Then,a spherical polyethylene sample was used as the standard to verify the accuracy of the system for the benchmark experiment.The simulation results were obtained using the Monte Carlo method with evaluated data from the ENDF/B-Ⅷ.0,CENDL-3.2,JEFF-3.3,and JENDL-5 libraries.The measured neutron leakage spectra were compared with the corresponding simulated results for the neutron spectrum shape and calculated C/E values.The results showed that the simulated spectra with different data libraries reproduced the experimental results well in the 0.15-8.0 MeV range.This study confirms that the leakage neutron spectrum measurement system based on the^(252)Cf source can perform benchmarking and provides a foundation for evaluating neutron nuclear data through benchmark experiments.展开更多
This paper used the virtual reality modeling language (VRML) to establish the 3D virtual experiment instrument model, and by using the visual programming language VB to design and develop a interactive virtual reali...This paper used the virtual reality modeling language (VRML) to establish the 3D virtual experiment instrument model, and by using the visual programming language VB to design and develop a interactive virtual realization experiment platform, the interface has friendly interface, stable operation, strong practicability like with the Windows style, is a kind of reform for the traditional physics experiment teaching mode. The system has practical use value, also has reference value for the reform and modernization of other experimental courses.展开更多
Existing vehicle experiment systems tend to focus on the research of vehicle dynamics by conducting performance tests on every system or some parts of the vehicle so as to improve the entire performance of the vehicle...Existing vehicle experiment systems tend to focus on the research of vehicle dynamics by conducting performance tests on every system or some parts of the vehicle so as to improve the entire performance of the vehicle.Virtual technology is widely utilized in various vehicle test-beds.These test-beds are mainly used to simulate the driving training,conduct the research on drivers'behaviors,or give virtual demonstrations of the transportation environment.However,the study on the active safety of the running vehicle in the virtual environment is still insufficient.A virtual scene including roads and vehicles is developed by using the software Creator and Vega,and radars and cameras are also simulated in the scene.Based on dSPACE's rapid prototyping simulation and its single board DS1103,a simulation model including vehicle control signals is set up in MATLAB/Simulink,the model is then built into C code,and the system defined file(SDF)is downloaded to the DS1103 board through the experiment debug software ControlDesk and is kept running.Programming is made by mixing Visual C++6.0,MATLAB API and Vega API.Control signals are read out by invoking library function MLIB/MTRACE of dSPACE.All the input,output,and system state values are acquired by arithmetic and are dynamically associated with the running status of the virtual vehicle.An intelligent vehicle experiment system is thus developed by virtue of program and integration.The system has not only the demonstration function,such as general driving,cruise control,active avoiding collision,but also the function of virtual experiment.Parameters of the system can be set according to needs,and the virtual test results can be analyzed and studied and used for the comparison with the existing models.The system reflects the running of the intelligent vehicle in the virtual traffic environment,at the same time,the system is a new attempt performed on the intelligent vehicle travel research and provides also a new research method for the development of intelligent vehicles.展开更多
In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-b...In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.展开更多
The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments...The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments and molecular dynamics(MD)simulations,this study investigates the microscopic enhanced oil recovery(EOR)mechanisms underlying residual oil removal using hybrid CO_(2) thermal systems.Based on the experimental models for the occurrence of heavy oil,this study evaluates the performance of hybrid CO_(2) thermal systems under various conditions using MD simulations.The results demonstrate that introducing CO_(2) molecules into heavy oil can effectively penetrate and decompose dense aggregates that are originally formed on hydrophobic surfaces.A stable miscible hybrid CO_(2) thermal system,with a high effective distribution ratio of CO_(2),proficiently reduces the interaction energies between heavy oil and rock surfaces,as well as within heavy oil.A visualization analysis of the interactions reveals that strong van der Waals(vdW)attractions occur between CO_(2) and heavy oil molecules,effectively promoting the decomposition and swelling of heavy oil.This unlocks the residual oil on the hydrophobic surfaces.Considering the impacts of temperature and CO_(2) concentration,an optimal gas-to-steam injection ratio(here,the CO_(2):steam ratio)ranging between 1:6 and 1:9 is recommended.This study examines the microscopic mechanisms underlying the hybrid CO_(2) thermal technique at a molecular scale,providing a significant theoretical guide for its expanded application in EOR.展开更多
As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple ...As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations.展开更多
In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly effi...In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly efficacious approach to enhance the teaching level of experimental courses in medicinal botany.The implementation of a digital microscope mutual system in experimental teaching not only enhances students practical skills in laboratory operations but also increases classroom efficiency.Furthermore,it supports personalized development among students while fostering innovative thinking,independent learning capabilities,and analysis and problem-solving skills.Additionally,this approach contributes to the enhancement of students scientific literacy.展开更多
Background:QiShenYiQi(QSYQ)is commonly accepted to treat ischemic stroke(IS)in clinical settings,yet the underlying mechanism of action of QSYQ is largely unknown.Methods:By combining systems pharmacology with experim...Background:QiShenYiQi(QSYQ)is commonly accepted to treat ischemic stroke(IS)in clinical settings,yet the underlying mechanism of action of QSYQ is largely unknown.Methods:By combining systems pharmacology with experimental assessment,we examined the key targets,bioactive components,and mechanisms of QSYQ against IS.Results:Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform predicted a total number of 254 targets that were potentially related to QSYQ,whereas 699 targets associated with IS were gathered from Therapeutic Target Database,Comparative Toxicogenomics Database,Gene Cards,Online Mendelian Inheritance in Man,and National Center for Biotechnology Information databases,and 83 of these targets overlap with QSYQ-related targets.Importantly,through the analysis of Gene Ontology functional annotation,Kyoto Encyclopedia of Genes and Genomes pathway enrichment,and protein-protein interaction network,we identified 20 related signaling pathways along with 4 hub genes.Subsequently,our molecular docking results revealed that QSYQ might interact with PTGS2,PTGS1,SCN5A,and HSP90AB1.We observed dose-dependent beneficial effects of QSYQ in significantly improving neurological function and alleviating histopathological damage in middle cerebral artery occlusion model,while decreasing infarct volume.Notablely,QSYQ markedly downregulates tumor necrosis factor-α,interleukin-6,and interleukin-1 beta.Overall,this study demonstrates the synergetic effects of QSYQ on regulating multi-targets in IS through inhibiting inflammatory processes and neuronal apoptosis,these findings may expand the understanding of QSYQ and provide guidance for its clinical application in treating IS.Conclusion:Current study reveals the protective roles of QSYQ against IS through modulating PTGS2/PTGS1/SCN5A/HSP90AB1 and TNF signaling pathways.展开更多
This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwent...This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwentexperimental PF0 model creation.All animals received implantationof the transcatheter suture closure system to evaluate procedural success.Comprehensive follow-up over sixmonths included serial ultrasound imaging,histopathological analysis,and gross anatomical exaninationof cardiac specimens.Results:Successful HaloStitch^(®)device implantation was adhieved in 11 of 13 swine.Gross anatomical examination confirrned secure positioning of all sutures in the atrial septum,with noredundancy or thrombus formation.Postoperative ultrasound demonstrated stable suture and staplepositions throughout follow-up,with no evidence of suture breakage,displacement,or thrombus.Stapleswere clearly visualized under ultrasound imaging,Both the atrial septal defect orifice diameter and residualseptal shunt flow velocity decreased significantly during the observation period.Histopathological analysisrevealed partially organized thrombi at the implant head and fibrous connective tissue encapsulation withlocalized inflammatory cell infiltration surrounding the polymer material.Conclsions:The transcathetersuture closure system(HaloStitch^(®))demonstrated feasibility,safety,and biocompatib ility for PFO closure ina swine model,supporting its potential for clinical translation.展开更多
Experimental therapies targeting immune and stromal cells,such as mast cells,cancer-associated fibroblasts,dendritic cells,and tumor endothelial cells,in the treatment of gastrointestinal solid tumors pose new and com...Experimental therapies targeting immune and stromal cells,such as mast cells,cancer-associated fibroblasts,dendritic cells,and tumor endothelial cells,in the treatment of gastrointestinal solid tumors pose new and complex surgical and medico-legal challenges.These innovative treatments require that informed consent not be limited to simple acceptance of the medical procedure,but instead reflect a true relational and cognitive process grounded in understanding,free choice,and the ability to revoke consent at any time.In particular,it is essential that the patient understands the experimental nature of the therapy,its development stage,potential benefits and risks,as well as the implications for their health and personal dignity.In the case of stromal cell-based treatments,which may exert complex immunomodulatory effects or activate angiogenic pathways that are not yet fully understood,patients must be made fully aware that they are participating in a non-standardized therapy whose outcomes,whether beneficial or harmful,cannot yet be predicted with certainty.This requires particularly careful medical communication,using simple yet scientifically accurate explanations delivered in appropriate language,along with a final verification of the patient’s actual understanding.展开更多
Vehicular ad hoc networks(VANets) experiment system is studied.Configuration,characteristics and research fields of VANets are introduced briefly.According to the characteristics of VANets,key modules that multi-vehic...Vehicular ad hoc networks(VANets) experiment system is studied.Configuration,characteristics and research fields of VANets are introduced briefly.According to the characteristics of VANets,key modules that multi-vehicle ad hoc experiment system needs are designed,and each module's function and practice requirement is analyzed.The reliability of experiment system is tested primarily using three experiment scenes of multi-vehicle ad hoc network,car following and wireless positioning.The experiment result shows that multi-vehicle ad hoc experiment system has the capability of the correlated experiment of VANets.展开更多
At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the stude...At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the students is decreased.To solve the problem of insufficient system interactivity and guidance,an experimental navigation system based on multi-mode fusion is proposed in this paper.The system first obtains user information by sensing the hardware devices,intelligently perceives the user intention and progress of the experiment according to the information acquired,and finally carries out a multi-modal intelligent navigation process for users.As an innovative aspect of this study,an intelligent multi-mode navigation system is used to guide users in conducting experiments,thereby reducing the user load and enabling the users to effectively complete their experiments.The results prove that this system can guide users in completing their experiments,and can effectively reduce the user load during the interaction process and improve the efficiency.展开更多
Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experimen...Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.展开更多
The optimization design of the power system is essential for stratospheric airships with paradoxical requirements of high reliability and low weight. The methodology of orthogonal experiment is presented to deal with ...The optimization design of the power system is essential for stratospheric airships with paradoxical requirements of high reliability and low weight. The methodology of orthogonal experiment is presented to deal with the problem of the optimization design of the airship's power system. Mathematical models of the solar array, regenerative fuel cell, and power management subsystem (PMS) are presented. The basic theory of the method of orthogonal experiment is discussed, and the selection of factors and levels of the experiment and the choice of the evaluation function are also revealed. The proposed methodology is validated in the optimization design of the power system of the ZhiYuan-2 stratospheric airship. Results show that the optimal configuration is easily obtained through this methodology. Furthermore, the optimal configuration and three sub-optimal configurations are in the Pareto frontier of the design space. Sensitivity analyses for the weight and reliability of the airship's power system are presented.展开更多
Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical...Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.展开更多
The present study was conducted to clarify the therapeutic effect of cornuside on experimental autoimmune encephalomyelitis(EAE)and its influence on T helper 17(Th17)cell and regulatory T(Treg)cell infiltration into t...The present study was conducted to clarify the therapeutic effect of cornuside on experimental autoimmune encephalomyelitis(EAE)and its influence on T helper 17(Th17)cell and regulatory T(Treg)cell infiltration into the central nervous system.Rats were randomly placed into four treatment groups:control,EAE,EAE+cornuside,and EAE+prednisolone.The neurological function scores of rats were assessed daily.On the second day after EAE rats began to show neurological deficit symptoms,the four groups were treated with normal saline,normal saline,cornuside(150 mg/kg),and prednisolone(5 mg/kg),respectively.The treatment was discontinued after two weeks,and the spinal cord was obtained for hematoxylin and eosin(H&E)and luxol fast blue staining,as well as retinoic acid receptor-related orphan receptorγ(RORγ)and forkhead box protein P3(Foxp3)immunohistochemical staining.Blood was collected for Th17 and Treg cell flow cytometry testing,and the serum levels of interleukin(IL)-17A,IL-10,transforming growth factor-β(TGF-β),IL-6,IL-23,and IL-2 were measured via enzymelinked immunosorbent assay(ELISA).Compared with rats in the EAE group,rats in the EAE+cornuside and EAE+prednisolone groups began to recover from neurological deficits earlier,and had a greater degree of improvement of symptoms.Focal inflammation,demyelination,and RORγ-positive cell infiltration were reduced by cornuside or prednisolone treatment,whereas the Foxp3-positive cell numbers were not significantly different.Meanwhile,the number of Th17 cells and the IL-17A,IL-6,and IL-23 levels were lower in the blood after cornuside or prednisolone treatment,whereas the number of Treg cells or the levels of IL-10,TGF-β,and IL-2 were not markedly different.Cornuside can alleviate symptoms of EAE neurological deficits through its anti-inflammatory and immunosuppressive effects,and Th17 cells may be one of its therapeutic targets.展开更多
Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the t...Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the third medium for most UVF devices.The vibrator is directly touched with the capillary can transmit mechanical energy on the capillary as much as possible,and the powder feeding can be controlled more precise.However,there are few reports about it.A direct UVF system which integrates the function of micro feeding,process observing,and powder forming was developed in this work.In order to analyze the effect of the system factors on feeding,a group of L9(3^3) orthogonal experiments are selected to confirm the effect of level change of factors.The three factors are capillary nozzle diameter,amplitude and signal.The flow rate was stable for each combined factors,and the optimum combination for the minimum flow rate are choosing small capillary,small amplitude,and triangular wave orderly.The whole process of feeding includes start point,middle stage and stop stage.Starting of feeding was synchronized to vibration when the amplitude of capillary nozzle is larger than critical amplitude.Then,the feeding process enters the middle stage,the feeding state is observed by the CCD,and it is very stable in the middle stage.Overflow of feeding can't be eliminated during the stop stage.The features of the deposited powder lines are analyzed; the overflow can be diminished by choosing small capillary and appropriate ratio of the capillary nozzle diameter to the particle size.Chinese characters lattices were deposited to validate the ability of quantitatively feeding and fixed feeding of UVF.Diameters of all powder dots show normal distribution,and more than 60% dots are concentrated from 550 μm to 650 μm,and the average diameter for all the dots is 597 μm.Most dots positions are well approached to their scheduled positions,and the maximum deviation is 0.27 mm.The new direct UVF system is used to implement experiments,which confirms the precise controllable of feeding.According improve the feeding technique,it suits well for rapid prototyping,chemistry,pharmaceutics and many other fields,which require precise measurement and feed minim powder.展开更多
Security monitoring system of coal mines is indispensable to ensure the safe and efficient production of colliery. Due to the special and narrow underground field of the coal mine, the electromagnetic interference can...Security monitoring system of coal mines is indispensable to ensure the safe and efficient production of colliery. Due to the special and narrow underground field of the coal mine, the electromagnetic interference can cause a series of misstatements and false positives on the monitoring system, which will severely hamper the safe production of coal industry. In this paper, first, the frequency characteristics of the interference source on the power line are extracted when equipment runs normally. Then the finite difference time domain method is introduced to analyze the effects of the electromagnetic interference parameters on the security monitoring signal line. And the interference voltage of the two terminal sides on the single line is taken as evaluating indexes. Finally, the electromagnetic interference parameters are optimized by orthogonal experimental design based on the MATLAB simulation on the normal operation of equipment.展开更多
Bajiaolian, one of the species in the Mayapple family ( Podophyllum pelatum ), has been widely used as a traditional Chinese herbal medicine for the remedies of snake bites, general weakness, poisons, condyloma accumi...Bajiaolian, one of the species in the Mayapple family ( Podophyllum pelatum ), has been widely used as a traditional Chinese herbal medicine for the remedies of snake bites, general weakness, poisons, condyloma accuminata, lymphadenopathy, and certain tumors in China. In Western medicine, Podophyllum was first used medically as a laxative in the early 19th century. Since 1940, the resin of podophyllum has also been used topically for various skin lesions, such as warts and condyloma. Human poisonings have been reported.An animal model was established to investigate the neurotoxic effects of Bajiaolian. Podophyllotoxin, the major active ingredient in Podophyllum, was injected (ip) to young adult male rats at doses of 0, 5, 10, or 15 mg-kg-1 b.w.. The animals were sacrificed 72 h after injection.Neuronal changes were readily observable in animals treated with 10 or 15 mg-kg-1 of the toxin. Edematous changes of the anterior horn motoneurons were observed in the spinal cord. No neuronal necrosis was found. The type of neuronal swelling is believed to be only a transient change and would probably subside with time if no further assaults occur. More serious and perhaps longer term of changes were found in the dorsal ganglion neurons and the nerve fibers (axons) in the central and peripheral nervous system. Severe depletion of the Nissl substance (RNA/polyribosomes) was observed in the dorsal root ganglion neurons. Alterations in these sensory neurons would give rise to and correlate with the sensory disturbances experienced by the patients. Bodian staining also revealed a dose-related increase in the coarseness (thickness) of the nerve fibers (axons) in the cerebellum, cerebral cortex, brainstem, and spinal cord.This is the first scientific study showing the neurotoxicity of Bajiaolian, a commonly used Chinese herbal medicine. Toxicities on other organ systems by this drug certainly exist. Caution should be exercised in the dispensing and usage of this medicine.展开更多
Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor liquid mixture from the heat sur- face and the closed-loop circulat...Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor liquid mixture from the heat sur- face and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space enviromnents. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and exper- imental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 ℃ and 78.2 ℃ under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11,22 L:h to 15.76 L·h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed; results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.展开更多
基金supported by the National Natural Science Foundation of China(No.U2067205)。
文摘Benchmark experiments are indispensable for the development of neutron nuclear data evaluation libraries.Given the lack of domestic benchmarking of nuclear data in the fission energy region,this study developed a neutron leakage spectrum measurement system using a spherical sample based on the^(252)Cf spontaneous fission source.The EJ309 detector(for highenergy measurements)and CLYC detector(for low-energy measurements)were combined to measure the time-of-flight spectrum using theγtagging method.To assess the performance of the system,the time-of-flight spectrum without a sample was measured first.The experimental spectra were consistent with those simulated using the Monte Carlo method and the standard^(252)Cf spectrum from ISO:8529-1.This demonstrates that the system can effectively measure the neutron events in the 0.15-8.0 MeV range.Then,a spherical polyethylene sample was used as the standard to verify the accuracy of the system for the benchmark experiment.The simulation results were obtained using the Monte Carlo method with evaluated data from the ENDF/B-Ⅷ.0,CENDL-3.2,JEFF-3.3,and JENDL-5 libraries.The measured neutron leakage spectra were compared with the corresponding simulated results for the neutron spectrum shape and calculated C/E values.The results showed that the simulated spectra with different data libraries reproduced the experimental results well in the 0.15-8.0 MeV range.This study confirms that the leakage neutron spectrum measurement system based on the^(252)Cf source can perform benchmarking and provides a foundation for evaluating neutron nuclear data through benchmark experiments.
文摘This paper used the virtual reality modeling language (VRML) to establish the 3D virtual experiment instrument model, and by using the visual programming language VB to design and develop a interactive virtual realization experiment platform, the interface has friendly interface, stable operation, strong practicability like with the Windows style, is a kind of reform for the traditional physics experiment teaching mode. The system has practical use value, also has reference value for the reform and modernization of other experimental courses.
基金supported by Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070006011)
文摘Existing vehicle experiment systems tend to focus on the research of vehicle dynamics by conducting performance tests on every system or some parts of the vehicle so as to improve the entire performance of the vehicle.Virtual technology is widely utilized in various vehicle test-beds.These test-beds are mainly used to simulate the driving training,conduct the research on drivers'behaviors,or give virtual demonstrations of the transportation environment.However,the study on the active safety of the running vehicle in the virtual environment is still insufficient.A virtual scene including roads and vehicles is developed by using the software Creator and Vega,and radars and cameras are also simulated in the scene.Based on dSPACE's rapid prototyping simulation and its single board DS1103,a simulation model including vehicle control signals is set up in MATLAB/Simulink,the model is then built into C code,and the system defined file(SDF)is downloaded to the DS1103 board through the experiment debug software ControlDesk and is kept running.Programming is made by mixing Visual C++6.0,MATLAB API and Vega API.Control signals are read out by invoking library function MLIB/MTRACE of dSPACE.All the input,output,and system state values are acquired by arithmetic and are dynamically associated with the running status of the virtual vehicle.An intelligent vehicle experiment system is thus developed by virtue of program and integration.The system has not only the demonstration function,such as general driving,cruise control,active avoiding collision,but also the function of virtual experiment.Parameters of the system can be set according to needs,and the virtual test results can be analyzed and studied and used for the comparison with the existing models.The system reflects the running of the intelligent vehicle in the virtual traffic environment,at the same time,the system is a new attempt performed on the intelligent vehicle travel research and provides also a new research method for the development of intelligent vehicles.
基金supported by Basic and Applied Basic research foundation of Guangdong province(Nos.2021A1515010343 and 2022A1515011582)the Science and Technology Program of Guangdong Province(Nos.2021A0505030026 and 2022A0505050029).
文摘In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.
基金financially supported by the National Natural Science Foundation of China(No.U20B6003)the China Scholarship Council(No.202306440015)a project of the China Petroleum&Chemical Corporation(No.P22174)。
文摘The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments and molecular dynamics(MD)simulations,this study investigates the microscopic enhanced oil recovery(EOR)mechanisms underlying residual oil removal using hybrid CO_(2) thermal systems.Based on the experimental models for the occurrence of heavy oil,this study evaluates the performance of hybrid CO_(2) thermal systems under various conditions using MD simulations.The results demonstrate that introducing CO_(2) molecules into heavy oil can effectively penetrate and decompose dense aggregates that are originally formed on hydrophobic surfaces.A stable miscible hybrid CO_(2) thermal system,with a high effective distribution ratio of CO_(2),proficiently reduces the interaction energies between heavy oil and rock surfaces,as well as within heavy oil.A visualization analysis of the interactions reveals that strong van der Waals(vdW)attractions occur between CO_(2) and heavy oil molecules,effectively promoting the decomposition and swelling of heavy oil.This unlocks the residual oil on the hydrophobic surfaces.Considering the impacts of temperature and CO_(2) concentration,an optimal gas-to-steam injection ratio(here,the CO_(2):steam ratio)ranging between 1:6 and 1:9 is recommended.This study examines the microscopic mechanisms underlying the hybrid CO_(2) thermal technique at a molecular scale,providing a significant theoretical guide for its expanded application in EOR.
基金supported in part by National Natural Science Foundation of China under Grant 62201087,Grant 62525101,in part by the National Key R&D Program of China under Grant 2023YFB2904803in part by the Guangdong Major Project of Basic and Applied Basic Research under Grant 2023B0303000001+1 种基金in part by the Natural Science Foundation of Beijing-Xiaomi Innovation Joint Foundation under Grant L243002in part by the Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Institute.
文摘As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations.
基金Supported by Major Project of School-level Teaching Reform and Research of Guangxi University of Chinese Medicine(2022A006)。
文摘In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly efficacious approach to enhance the teaching level of experimental courses in medicinal botany.The implementation of a digital microscope mutual system in experimental teaching not only enhances students practical skills in laboratory operations but also increases classroom efficiency.Furthermore,it supports personalized development among students while fostering innovative thinking,independent learning capabilities,and analysis and problem-solving skills.Additionally,this approach contributes to the enhancement of students scientific literacy.
基金supported by the National Natural Science Foundation of China(No.82274313)Projects of Shaanxi Administration of Traditional Chinese Medicine(2022-SLRH-YQ-010)Key Laboratory of Traditional Chinese Medicine and Pharmacology.
文摘Background:QiShenYiQi(QSYQ)is commonly accepted to treat ischemic stroke(IS)in clinical settings,yet the underlying mechanism of action of QSYQ is largely unknown.Methods:By combining systems pharmacology with experimental assessment,we examined the key targets,bioactive components,and mechanisms of QSYQ against IS.Results:Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform predicted a total number of 254 targets that were potentially related to QSYQ,whereas 699 targets associated with IS were gathered from Therapeutic Target Database,Comparative Toxicogenomics Database,Gene Cards,Online Mendelian Inheritance in Man,and National Center for Biotechnology Information databases,and 83 of these targets overlap with QSYQ-related targets.Importantly,through the analysis of Gene Ontology functional annotation,Kyoto Encyclopedia of Genes and Genomes pathway enrichment,and protein-protein interaction network,we identified 20 related signaling pathways along with 4 hub genes.Subsequently,our molecular docking results revealed that QSYQ might interact with PTGS2,PTGS1,SCN5A,and HSP90AB1.We observed dose-dependent beneficial effects of QSYQ in significantly improving neurological function and alleviating histopathological damage in middle cerebral artery occlusion model,while decreasing infarct volume.Notablely,QSYQ markedly downregulates tumor necrosis factor-α,interleukin-6,and interleukin-1 beta.Overall,this study demonstrates the synergetic effects of QSYQ on regulating multi-targets in IS through inhibiting inflammatory processes and neuronal apoptosis,these findings may expand the understanding of QSYQ and provide guidance for its clinical application in treating IS.Conclusion:Current study reveals the protective roles of QSYQ against IS through modulating PTGS2/PTGS1/SCN5A/HSP90AB1 and TNF signaling pathways.
基金supported by grants from National High-Level Hospital Clinical Research Funding(2023-GSP-RC-04).
文摘This study aimed to evaluate the feasibility,safety,and efficacy of a noveltranscatheter suture closure system(HaloStitch^(®))for patent foramen ovale(PFO)closure in a swine model.Methods:Thirteen swine underwentexperimental PF0 model creation.All animals received implantationof the transcatheter suture closure system to evaluate procedural success.Comprehensive follow-up over sixmonths included serial ultrasound imaging,histopathological analysis,and gross anatomical exaninationof cardiac specimens.Results:Successful HaloStitch^(®)device implantation was adhieved in 11 of 13 swine.Gross anatomical examination confirrned secure positioning of all sutures in the atrial septum,with noredundancy or thrombus formation.Postoperative ultrasound demonstrated stable suture and staplepositions throughout follow-up,with no evidence of suture breakage,displacement,or thrombus.Stapleswere clearly visualized under ultrasound imaging,Both the atrial septal defect orifice diameter and residualseptal shunt flow velocity decreased significantly during the observation period.Histopathological analysisrevealed partially organized thrombi at the implant head and fibrous connective tissue encapsulation withlocalized inflammatory cell infiltration surrounding the polymer material.Conclsions:The transcathetersuture closure system(HaloStitch^(®))demonstrated feasibility,safety,and biocompatib ility for PFO closure ina swine model,supporting its potential for clinical translation.
文摘Experimental therapies targeting immune and stromal cells,such as mast cells,cancer-associated fibroblasts,dendritic cells,and tumor endothelial cells,in the treatment of gastrointestinal solid tumors pose new and complex surgical and medico-legal challenges.These innovative treatments require that informed consent not be limited to simple acceptance of the medical procedure,but instead reflect a true relational and cognitive process grounded in understanding,free choice,and the ability to revoke consent at any time.In particular,it is essential that the patient understands the experimental nature of the therapy,its development stage,potential benefits and risks,as well as the implications for their health and personal dignity.In the case of stromal cell-based treatments,which may exert complex immunomodulatory effects or activate angiogenic pathways that are not yet fully understood,patients must be made fully aware that they are participating in a non-standardized therapy whose outcomes,whether beneficial or harmful,cannot yet be predicted with certainty.This requires particularly careful medical communication,using simple yet scientifically accurate explanations delivered in appropriate language,along with a final verification of the patient’s actual understanding.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2006CB705500)the Fundamental Research Funds for the Central Universities (Grant No. 2009JBM055)
文摘Vehicular ad hoc networks(VANets) experiment system is studied.Configuration,characteristics and research fields of VANets are introduced briefly.According to the characteristics of VANets,key modules that multi-vehicle ad hoc experiment system needs are designed,and each module's function and practice requirement is analyzed.The reliability of experiment system is tested primarily using three experiment scenes of multi-vehicle ad hoc network,car following and wireless positioning.The experiment result shows that multi-vehicle ad hoc experiment system has the capability of the correlated experiment of VANets.
基金the the National Key R&D Program of China(No.2018YFB1004901)the Independent Innovation Team Project of Jinan City(No.2019GXRC013).
文摘At present,most experimental teaching systems lack guidance of an operator,and thus users often do not know what to do during an experiment.The user load is therefore increased,and the learning efficiency of the students is decreased.To solve the problem of insufficient system interactivity and guidance,an experimental navigation system based on multi-mode fusion is proposed in this paper.The system first obtains user information by sensing the hardware devices,intelligently perceives the user intention and progress of the experiment according to the information acquired,and finally carries out a multi-modal intelligent navigation process for users.As an innovative aspect of this study,an intelligent multi-mode navigation system is used to guide users in conducting experiments,thereby reducing the user load and enabling the users to effectively complete their experiments.The results prove that this system can guide users in completing their experiments,and can effectively reduce the user load during the interaction process and improve the efficiency.
文摘Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.
基金Project supported by the National Hi-Tech R&D Program (863) of China (No. 2011AA7051001)the National Nature Science Foundation (No. 51205253) of China
文摘The optimization design of the power system is essential for stratospheric airships with paradoxical requirements of high reliability and low weight. The methodology of orthogonal experiment is presented to deal with the problem of the optimization design of the airship's power system. Mathematical models of the solar array, regenerative fuel cell, and power management subsystem (PMS) are presented. The basic theory of the method of orthogonal experiment is discussed, and the selection of factors and levels of the experiment and the choice of the evaluation function are also revealed. The proposed methodology is validated in the optimization design of the power system of the ZhiYuan-2 stratospheric airship. Results show that the optimal configuration is easily obtained through this methodology. Furthermore, the optimal configuration and three sub-optimal configurations are in the Pareto frontier of the design space. Sensitivity analyses for the weight and reliability of the airship's power system are presented.
基金Projects(51674154,51704125,51874188) supported by the National Natural Science Foundation of ChinaProjects(2017T100116,2017T100491,2016M590150,2016M602144) supported by the China Postdoctoral Science Foundation+2 种基金Projects(2017GGX30101,2018GGX109001,ZR2017QEE013) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLCRSM18KF012) supported by the State Key Laboratory of Coal Resources and Safe Mining,ChinaProject(2018WLJH76) supported by the Young Scholars Program of Shandong University,China
文摘Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.
基金This work was supported by the Traditional Chinese Medical Science and Technology Project of Zhejiang Province(No.2019ZA063)the Scientific Research Fund of Zhejiang Chinese Medical University(No.2019ZY09),China.
文摘The present study was conducted to clarify the therapeutic effect of cornuside on experimental autoimmune encephalomyelitis(EAE)and its influence on T helper 17(Th17)cell and regulatory T(Treg)cell infiltration into the central nervous system.Rats were randomly placed into four treatment groups:control,EAE,EAE+cornuside,and EAE+prednisolone.The neurological function scores of rats were assessed daily.On the second day after EAE rats began to show neurological deficit symptoms,the four groups were treated with normal saline,normal saline,cornuside(150 mg/kg),and prednisolone(5 mg/kg),respectively.The treatment was discontinued after two weeks,and the spinal cord was obtained for hematoxylin and eosin(H&E)and luxol fast blue staining,as well as retinoic acid receptor-related orphan receptorγ(RORγ)and forkhead box protein P3(Foxp3)immunohistochemical staining.Blood was collected for Th17 and Treg cell flow cytometry testing,and the serum levels of interleukin(IL)-17A,IL-10,transforming growth factor-β(TGF-β),IL-6,IL-23,and IL-2 were measured via enzymelinked immunosorbent assay(ELISA).Compared with rats in the EAE group,rats in the EAE+cornuside and EAE+prednisolone groups began to recover from neurological deficits earlier,and had a greater degree of improvement of symptoms.Focal inflammation,demyelination,and RORγ-positive cell infiltration were reduced by cornuside or prednisolone treatment,whereas the Foxp3-positive cell numbers were not significantly different.Meanwhile,the number of Th17 cells and the IL-17A,IL-6,and IL-23 levels were lower in the blood after cornuside or prednisolone treatment,whereas the number of Treg cells or the levels of IL-10,TGF-β,and IL-2 were not markedly different.Cornuside can alleviate symptoms of EAE neurological deficits through its anti-inflammatory and immunosuppressive effects,and Th17 cells may be one of its therapeutic targets.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA03A238)National Natural Science Foundation of China (Grant No. 51005186)Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 2007B39)
文摘Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the third medium for most UVF devices.The vibrator is directly touched with the capillary can transmit mechanical energy on the capillary as much as possible,and the powder feeding can be controlled more precise.However,there are few reports about it.A direct UVF system which integrates the function of micro feeding,process observing,and powder forming was developed in this work.In order to analyze the effect of the system factors on feeding,a group of L9(3^3) orthogonal experiments are selected to confirm the effect of level change of factors.The three factors are capillary nozzle diameter,amplitude and signal.The flow rate was stable for each combined factors,and the optimum combination for the minimum flow rate are choosing small capillary,small amplitude,and triangular wave orderly.The whole process of feeding includes start point,middle stage and stop stage.Starting of feeding was synchronized to vibration when the amplitude of capillary nozzle is larger than critical amplitude.Then,the feeding process enters the middle stage,the feeding state is observed by the CCD,and it is very stable in the middle stage.Overflow of feeding can't be eliminated during the stop stage.The features of the deposited powder lines are analyzed; the overflow can be diminished by choosing small capillary and appropriate ratio of the capillary nozzle diameter to the particle size.Chinese characters lattices were deposited to validate the ability of quantitatively feeding and fixed feeding of UVF.Diameters of all powder dots show normal distribution,and more than 60% dots are concentrated from 550 μm to 650 μm,and the average diameter for all the dots is 597 μm.Most dots positions are well approached to their scheduled positions,and the maximum deviation is 0.27 mm.The new direct UVF system is used to implement experiments,which confirms the precise controllable of feeding.According improve the feeding technique,it suits well for rapid prototyping,chemistry,pharmaceutics and many other fields,which require precise measurement and feed minim powder.
文摘Security monitoring system of coal mines is indispensable to ensure the safe and efficient production of colliery. Due to the special and narrow underground field of the coal mine, the electromagnetic interference can cause a series of misstatements and false positives on the monitoring system, which will severely hamper the safe production of coal industry. In this paper, first, the frequency characteristics of the interference source on the power line are extracted when equipment runs normally. Then the finite difference time domain method is introduced to analyze the effects of the electromagnetic interference parameters on the security monitoring signal line. And the interference voltage of the two terminal sides on the single line is taken as evaluating indexes. Finally, the electromagnetic interference parameters are optimized by orthogonal experimental design based on the MATLAB simulation on the normal operation of equipment.
文摘Bajiaolian, one of the species in the Mayapple family ( Podophyllum pelatum ), has been widely used as a traditional Chinese herbal medicine for the remedies of snake bites, general weakness, poisons, condyloma accuminata, lymphadenopathy, and certain tumors in China. In Western medicine, Podophyllum was first used medically as a laxative in the early 19th century. Since 1940, the resin of podophyllum has also been used topically for various skin lesions, such as warts and condyloma. Human poisonings have been reported.An animal model was established to investigate the neurotoxic effects of Bajiaolian. Podophyllotoxin, the major active ingredient in Podophyllum, was injected (ip) to young adult male rats at doses of 0, 5, 10, or 15 mg-kg-1 b.w.. The animals were sacrificed 72 h after injection.Neuronal changes were readily observable in animals treated with 10 or 15 mg-kg-1 of the toxin. Edematous changes of the anterior horn motoneurons were observed in the spinal cord. No neuronal necrosis was found. The type of neuronal swelling is believed to be only a transient change and would probably subside with time if no further assaults occur. More serious and perhaps longer term of changes were found in the dorsal ganglion neurons and the nerve fibers (axons) in the central and peripheral nervous system. Severe depletion of the Nissl substance (RNA/polyribosomes) was observed in the dorsal root ganglion neurons. Alterations in these sensory neurons would give rise to and correlate with the sensory disturbances experienced by the patients. Bodian staining also revealed a dose-related increase in the coarseness (thickness) of the nerve fibers (axons) in the cerebellum, cerebral cortex, brainstem, and spinal cord.This is the first scientific study showing the neurotoxicity of Bajiaolian, a commonly used Chinese herbal medicine. Toxicities on other organ systems by this drug certainly exist. Caution should be exercised in the dispensing and usage of this medicine.
基金supported by the National Natural Science Foundation of China(No.50506003)
文摘Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor liquid mixture from the heat sur- face and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space enviromnents. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and exper- imental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 ℃ and 78.2 ℃ under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11,22 L:h to 15.76 L·h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed; results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.