Import of New and High-tech Products Increases Rapidly The proportion of new and high-tech products in the total import continues to increase.Ever since 1991,the proportion of new and high-tech products in the total i...Import of New and High-tech Products Increases Rapidly The proportion of new and high-tech products in the total import continues to increase.Ever since 1991,the proportion of new and high-tech products in the total import has experienced a continuous growth.It took up only 14.8% of the total import in 1991.The figure reached 20.8% in 1998,and further rose to that of 26.3% in 2001.From January to June this year,the import of new and hightech products totaled 34.540 billion USD,up 18.1% over the same per...展开更多
In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact soluti...In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact solutions are characterized in the form of hyperbolic,trigonometric and rational function solutions using exp(-Φ(η))-expansion method,whereas the solution in the form of hyperbolic function expression is obtained by the modified Kudryashov method.These exact solutions also include kink,bright,dark,singular and periodic soliton solutions.The graphical interpretation of the exact solutions is addressed for specific choices of the parameters appearing in the solutions.展开更多
In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ...In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.展开更多
文摘Import of New and High-tech Products Increases Rapidly The proportion of new and high-tech products in the total import continues to increase.Ever since 1991,the proportion of new and high-tech products in the total import has experienced a continuous growth.It took up only 14.8% of the total import in 1991.The figure reached 20.8% in 1998,and further rose to that of 26.3% in 2001.From January to June this year,the import of new and hightech products totaled 34.540 billion USD,up 18.1% over the same per...
文摘In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact solutions are characterized in the form of hyperbolic,trigonometric and rational function solutions using exp(-Φ(η))-expansion method,whereas the solution in the form of hyperbolic function expression is obtained by the modified Kudryashov method.These exact solutions also include kink,bright,dark,singular and periodic soliton solutions.The graphical interpretation of the exact solutions is addressed for specific choices of the parameters appearing in the solutions.
文摘In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.