In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomts...In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomtsev-Petviashvili- Benjamin-Bona Mahony (KP-BBM). As a result, different types of exact solutions are obtained. Also we have examined the relation between the solutions obtained from the different methods. These methods are an efficient mathematical tool for solving fractional differential equations (FDEs) and it can be applied to other nonlinear FDEs.展开更多
In this article, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Exp-function method are employed for constructing the exact solutions of nonlinear time fractional partial diff...In this article, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Exp-function method are employed for constructing the exact solutions of nonlinear time fractional partial differential equations in mathematical physics. As a result, some new exact solutions for them are successfully established. It is indicated that the solutions obtained by the Exp-function method are reliable, straightforward and effective method for strongly nonlinear fractional partial equations with modified Riemann-Liouville derivative by Jumarie's. This approach can also be applied to other nonlinear time and space fractional differential equations.展开更多
Recently,the authors of[Commun.Theor.Phys.56(2011)397]made a number of useful observations on Exp-function method.In this study,we focus on another vital issue,namely,the misleading results of double Exp-function method.
This paper applies the EXP-function method to find exact solutions of various nonlinear equations. Tzitzeica- Dodd-Bullough (TDB) equation was selected to illustrate the effectiveness and convenience of the suggested ...This paper applies the EXP-function method to find exact solutions of various nonlinear equations. Tzitzeica- Dodd-Bullough (TDB) equation was selected to illustrate the effectiveness and convenience of the suggested method. More generalized solitonary solutions with free parameters were obtained by suitable choice of the free parameters, and also the obtained solitonary solutions can be converted into periodic solutions.展开更多
We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analyti...We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model.展开更多
This paper focuses on the application of Exp-function method to obtain generalized solutions of the KdV-Burgers-Kuramoto equation and the Kuramoto-Sivashinsky equation.It is demonstrated that the Exp-function method p...This paper focuses on the application of Exp-function method to obtain generalized solutions of the KdV-Burgers-Kuramoto equation and the Kuramoto-Sivashinsky equation.It is demonstrated that the Exp-function method provides a mathematical tool for solving the nonlinear evolution equation in mathematical physics.展开更多
Recently, many important nonlinear partial differential equations arising in the applied physical and mathematical sciences have been tackled by a popular approach, the so-called Exp-function method. In this paper, we...Recently, many important nonlinear partial differential equations arising in the applied physical and mathematical sciences have been tackled by a popular approach, the so-called Exp-function method. In this paper, we present some shortcomings of this method by analyzing the results of recently published papers. We also discuss the possible improvement of the effectiveness of the method.展开更多
In this paper, we apply Exp-function method to give traveling wave solutions of second order sine-Bratu type equations. This method is straightforward, concise and effective.
In this paper,we present an extended Exp-function method to differential-difference equation(s).With the help of symbolic computation,we solve discrete nonlinear Schrodinger lattice as an example,and obtain a series o...In this paper,we present an extended Exp-function method to differential-difference equation(s).With the help of symbolic computation,we solve discrete nonlinear Schrodinger lattice as an example,and obtain a series of general solutions in forms of Exp-function.展开更多
In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructi...In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructing the exact solutions and the solitary wave solutions for the nonlinear time fractional Sharma-Tasso- Olver equation. With help of Maple, we can get exact explicit l-wave, 2-wave and 3-wave solutions, which include l-soliton, 2-soliton and 3-soliton type solutions if we use the multiple exp-function method while we can get only exact explicit l-wave solution including l-soliton type solution if we use the modified simple equation method. Two cases with specific values of the involved parameters are plotted for each 2-wave and 3-wave solutions.展开更多
In the present paper,we build the new analytical exact solutions of a nonlinear differential equation,specifically,coupled Boussinesq-Burgers equations by means of Exp-function method.Then,we analyze the results by pl...In the present paper,we build the new analytical exact solutions of a nonlinear differential equation,specifically,coupled Boussinesq-Burgers equations by means of Exp-function method.Then,we analyze the results by plotting the three dimensional soliton graphs for each case,which exhibit the simplicity and effectiveness of the proposed method.The primary purpose of this paper is to employ a new approach,which allows us victorious and efficient derivation of the new analytical exact solutions for the coupled Boussinesq-Burgers equations.展开更多
In this work, the Exp-function method is employed to find new wave solutions for the Sine-Gordon and Ostrovsky equation. The equations are simplified to the nonlinear partial differential equations and then different ...In this work, the Exp-function method is employed to find new wave solutions for the Sine-Gordon and Ostrovsky equation. The equations are simplified to the nonlinear partial differential equations and then different types of exact solutions are extracted by this method. It is shown that the Exp-function method is a powerful analytical method for solving other nonlinear equations occurring in nonlinear physical phenomena. Results are presented in contour plots that show the different values of effective parameters on the velocity profiles.展开更多
In this work, it is aimed to find one- and two-soliton solutions to nonlinear Tzitzeica-Dodd-Bullough (TDB) equation. Since the double exp-function method has been widely used to solve several nonlinear evolution eq...In this work, it is aimed to find one- and two-soliton solutions to nonlinear Tzitzeica-Dodd-Bullough (TDB) equation. Since the double exp-function method has been widely used to solve several nonlinear evolution equations in mathematical physics, we have also used it with the help of symbolic computation for solving the present equation. The method seems to be easier and more accurate thanks to the recent developments in the field of symbolic computation.展开更多
This paper is the spectator of the arrangement of an efficient transformation and exfunction technique to build up generalized exact solutions of the biological population model equation. Computational work and subseq...This paper is the spectator of the arrangement of an efficient transformation and exfunction technique to build up generalized exact solutions of the biological population model equation. Computational work and subsequent numerical results re-identify the effectiveness of proposed algorithm. It is pragmatic that recommended plan is greatly consistent and may be comprehensive to other nonlinear differential equations of fractional order.展开更多
In this paper,the Exp-function method is used to construct exact solitary wave solutions for the generalized Burgers-Fisher equation with nonlinear terms of any order.With the aid of Maple computation,we obtain many n...In this paper,the Exp-function method is used to construct exact solitary wave solutions for the generalized Burgers-Fisher equation with nonlinear terms of any order.With the aid of Maple computation,we obtain many new and more general exact solitary wave solutions expressed by various exponential and hyperbolic functions.Our results can successfully recover previously known solitary wave solutions that have been found by the tanh-function method and other more sophisticated methods.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery...Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
文摘In the present article, He's fractional derivative, the ansatz method, the ( C / G)-expansion method, and the exp-function method are used to construct the exact solutions of nonlinear space-time fractional Kadomtsev-Petviashvili- Benjamin-Bona Mahony (KP-BBM). As a result, different types of exact solutions are obtained. Also we have examined the relation between the solutions obtained from the different methods. These methods are an efficient mathematical tool for solving fractional differential equations (FDEs) and it can be applied to other nonlinear FDEs.
文摘In this article, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Exp-function method are employed for constructing the exact solutions of nonlinear time fractional partial differential equations in mathematical physics. As a result, some new exact solutions for them are successfully established. It is indicated that the solutions obtained by the Exp-function method are reliable, straightforward and effective method for strongly nonlinear fractional partial equations with modified Riemann-Liouville derivative by Jumarie's. This approach can also be applied to other nonlinear time and space fractional differential equations.
文摘Recently,the authors of[Commun.Theor.Phys.56(2011)397]made a number of useful observations on Exp-function method.In this study,we focus on another vital issue,namely,the misleading results of double Exp-function method.
文摘This paper applies the EXP-function method to find exact solutions of various nonlinear equations. Tzitzeica- Dodd-Bullough (TDB) equation was selected to illustrate the effectiveness and convenience of the suggested method. More generalized solitonary solutions with free parameters were obtained by suitable choice of the free parameters, and also the obtained solitonary solutions can be converted into periodic solutions.
文摘We applied the multiple exp-function scheme to the(2+1)-dimensional Sawada-Kotera(SK) equation and(3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model.
基金Supported by the National Natural Science Foundation of China(91024026,10975126)Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(200934021100 32)
文摘This paper focuses on the application of Exp-function method to obtain generalized solutions of the KdV-Burgers-Kuramoto equation and the Kuramoto-Sivashinsky equation.It is demonstrated that the Exp-function method provides a mathematical tool for solving the nonlinear evolution equation in mathematical physics.
文摘Recently, many important nonlinear partial differential equations arising in the applied physical and mathematical sciences have been tackled by a popular approach, the so-called Exp-function method. In this paper, we present some shortcomings of this method by analyzing the results of recently published papers. We also discuss the possible improvement of the effectiveness of the method.
文摘In this paper, we apply Exp-function method to give traveling wave solutions of second order sine-Bratu type equations. This method is straightforward, concise and effective.
基金National Natural Science Foundation of China under Grant No.10671121
文摘In this paper,we present an extended Exp-function method to differential-difference equation(s).With the help of symbolic computation,we solve discrete nonlinear Schrodinger lattice as an example,and obtain a series of general solutions in forms of Exp-function.
文摘In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructing the exact solutions and the solitary wave solutions for the nonlinear time fractional Sharma-Tasso- Olver equation. With help of Maple, we can get exact explicit l-wave, 2-wave and 3-wave solutions, which include l-soliton, 2-soliton and 3-soliton type solutions if we use the multiple exp-function method while we can get only exact explicit l-wave solution including l-soliton type solution if we use the modified simple equation method. Two cases with specific values of the involved parameters are plotted for each 2-wave and 3-wave solutions.
文摘In the present paper,we build the new analytical exact solutions of a nonlinear differential equation,specifically,coupled Boussinesq-Burgers equations by means of Exp-function method.Then,we analyze the results by plotting the three dimensional soliton graphs for each case,which exhibit the simplicity and effectiveness of the proposed method.The primary purpose of this paper is to employ a new approach,which allows us victorious and efficient derivation of the new analytical exact solutions for the coupled Boussinesq-Burgers equations.
文摘In this work, the Exp-function method is employed to find new wave solutions for the Sine-Gordon and Ostrovsky equation. The equations are simplified to the nonlinear partial differential equations and then different types of exact solutions are extracted by this method. It is shown that the Exp-function method is a powerful analytical method for solving other nonlinear equations occurring in nonlinear physical phenomena. Results are presented in contour plots that show the different values of effective parameters on the velocity profiles.
文摘In this work, it is aimed to find one- and two-soliton solutions to nonlinear Tzitzeica-Dodd-Bullough (TDB) equation. Since the double exp-function method has been widely used to solve several nonlinear evolution equations in mathematical physics, we have also used it with the help of symbolic computation for solving the present equation. The method seems to be easier and more accurate thanks to the recent developments in the field of symbolic computation.
文摘This paper is the spectator of the arrangement of an efficient transformation and exfunction technique to build up generalized exact solutions of the biological population model equation. Computational work and subsequent numerical results re-identify the effectiveness of proposed algorithm. It is pragmatic that recommended plan is greatly consistent and may be comprehensive to other nonlinear differential equations of fractional order.
基金Supported by the National Natural Science Foundation of China (No.10971169)
文摘In this paper,the Exp-function method is used to construct exact solitary wave solutions for the generalized Burgers-Fisher equation with nonlinear terms of any order.With the aid of Maple computation,we obtain many new and more general exact solitary wave solutions expressed by various exponential and hyperbolic functions.Our results can successfully recover previously known solitary wave solutions that have been found by the tanh-function method and other more sophisticated methods.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the Natural Science Foundation of Guangxi Province(Grant Nos.2023GXNSFAA026067,2024GXN SFAA010521)the National Natural Science Foundation of China(Nos.12361079,12201149,12261026).
文摘Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.