To further enhance the recovery rate of low-temperature waste heat,the low-temperature flue gas in the sinter annular cooler was chosen as the heat source of an organic Rankine cycle(ORC)system,and the comprehensive e...To further enhance the recovery rate of low-temperature waste heat,the low-temperature flue gas in the sinter annular cooler was chosen as the heat source of an organic Rankine cycle(ORC)system,and the comprehensive evaluation of energy,exergy and economic performance of the ORC system was conducted deeply.The energy,exergy and economic performance models of the ORC system were established,and proper candidate organic working fluids(OWFs)were selected based on the thermo-physical properties of OWF and operating characteristics of ORC system.Then,the effects of ORC crucial parameters on the system energy,exergy and economic performances were evaluated in detail.Finally,the bi-objective optimization based on the genetic algorithm was conducted to analyze the optimal performance of the ORC system under the designed ORC crucial parameters,and the exergy efficiency and electricity production cost were set as the evaluation indexes of parametric optimization.The results indicate that the ORC system with the higher evaporation temperature and lower condensation temperature can obtain the larger system exergy efficiency and smaller electricity production cost.The smaller the superheat degree of OWF and pinch-point temperature difference in the evaporator are,the better the energy and exergy performances of the ORC system are.Under the optimization results,R245fa has the best comprehensive performance with the exergy efficiency of 46.34%and electricity production cost of 0.12123$/kWh among the selected candidate OWFs,which should be preferentially chosen as the OWF of the ORC system.展开更多
After long-term operation,the performance of components in the GTCC system deteriorates and requires timely maintenance.Due to the inability to directly measure the degree of component malfunction,it is necessary to u...After long-term operation,the performance of components in the GTCC system deteriorates and requires timely maintenance.Due to the inability to directly measure the degree of component malfunction,it is necessary to use advanced exergy analysis diagnosis methods to characterize the components’health condition(degree of malfunction)through operation data of the GTCC system.The dissipative temperature is used to describe the degree of malfunction of different components in the GTCC system,and an advanced exergy analysis diagnostic method is used to establish a database of overall operating condition component malfunctions in theGTCC system.Ebsilon software is used to simulate the critical parameters of the malfunctions of the GTCC system components and to obtain the changes in the dissipative temperature of different components.Meanwhile,the fuel consumption and economic changes of the GTCC system on a characteristic power supply day under health and malfunction conditions are analyzed.Finally,the effects of maintenance costs,electricity,and gas prices on maintenance expenses and profits are analyzed.The results show that the GTCC system maintenance profit is 6.07$/MWh,while the GTCC system maintenance expense is 5.83$/MWh.Compared with the planned maintenancemode,the malfunction maintenance mode saves 0.24$/MWh.Simultaneously,the maintenance coefficient of GTCC should be adjusted under different malfunctions to obtain a more accurate maintenance period.展开更多
In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of...In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of hope,offering a sustainable and environmentally friendly solution to desalination.Solar distillation technology,harnessing the power of the sun,transforms seawater into freshwater,expanding the availability of this precious resource.Optimizing solar still performance under specific climatic conditions and evaluating different configurations is crucial for practical implementation and widespread adoption of solar energy.In this study,we conducted theoretical investigations on three distinct solar still configurations to evaluate their performance under Baghdad’s climatic conditions.The solar stills analyzed include the passive solar still,themodified solar still coupled with a magnetic field,and themodified solar still coupled with bothmagnetic and electrical fields.The results proved that the evaporation heat transfer coefficient peaked at 14:00,reaching 25.05 W/m^(2).℃for the convention pyramid solar still(CPSS),32.33 W/m^(2).℃for the magnetic pyramid solar still(MPSS),and 40.98 W/m^(2).℃for elecro-magnetic pyramid solar still(EMPSS),highlighting their efficiency in converting solar energy to vapor.However,exergy efficiency remained notably lower,at 1.6%,5.31%,and 7.93%for the three still types,even as energy efficiency reached its maximum of 18.6%at 14:00 with a corresponding peak evaporative heat of 162.4 W/m^(2).展开更多
Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refri...Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.展开更多
To decrease energy consumption of ladle furnace, exergy analysis and optimization were conducted based on the ladle furnace refining process of modern clean steelmaking. Exergy analysis results showed that exergy loss...To decrease energy consumption of ladle furnace, exergy analysis and optimization were conducted based on the ladle furnace refining process of modern clean steelmaking. Exergy analysis results showed that exergy loss induced by unavailable electric energy is the largest, and the electric energy efficiency is 46.20%. To cut down the unavailable electric energy, industrial experiments of submerged arc heating were carried out combined with slag composition modification. Results showed that submerged arc heating can be achieved within most heating period, average heating rate increased by 0. 5 ℃/min, unavailable electric energy decreased by 21. 730 MJ per ton steel, and electric energy efficiency was enhanced by 14.84 %. As the refining cycle was shortened, the exergy loss induced by heat elimination decreased from 19. 455 MJ per ton steel to 11. 066 MJ per ton steel.展开更多
Factory-level data from 23 provinces and some national statistical data in cement manufacturing industry and socio-economies in 2012 are used to analyze the spatial distribution of exergy use for China's cement manuf...Factory-level data from 23 provinces and some national statistical data in cement manufacturing industry and socio-economies in 2012 are used to analyze the spatial distribution of exergy use for China's cement manufacturing industry by the Extended Exergy Accounting method. This method takes full account of the inclusion of energy and raw material supply and other external factors (capital, labor and environment) into a comprehensive resource cost assessment. The extended exergy consumption and its intensity quantitatively at the provincial levels of cement production were calculated and then the agglomeration level of exergy use at the regional level was also evaluated. Based on this analysis, their spatial difference in size and efficiency of exergy use at the provincial level were identified. Moreover, their regional characteristics were revealed. Some important results could be drawn as follows. First, the invisible social cost accounted for 1/10 of the total exergy use in cement manufacturing industry, while the energy element shared about 9/10. Second, the gross distribution of exergy use in China's cement manufacturing industry was mainly concentrated in the eastern region like Anhui and Shandong provinces, and in the western region like Sichuan province. In terms of exergy use, the coal and electricity were the highest of energy costs in the eastern region, whereas the cost of capital, labor and external environmental factors highlighted the invisible social cost for cement production in the central and western regions to some extent. Third, the efficiency distribution of exergy use in China's cement manufacturing industry illustrated an incremental feature from west to east, especially for the energy, labor and capital efficiencies. An evaluation on the environmental efficiency indicated that provinces or regions like Tibet, Xinjiang, Inner Mongolia and Shanxi have undertaken much higher environmental costs. Fourth, the 23 provinces could be classified into eight groups by the Euclidean distance model using the gross and efficiency results of exergy use. Fifth, the high industry concentration degree is the main driving factor of exergy efficiency improvement for cement manufacturing industry in China.展开更多
Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analys...Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steadystate optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.展开更多
Energy determines the ability of matter to work. However, in the given environment, the real usefulness to perform work is determined by exergy. This study covers not only solar, but also any monochromatic thermal rad...Energy determines the ability of matter to work. However, in the given environment, the real usefulness to perform work is determined by exergy. This study covers not only solar, but also any monochromatic thermal radiation. The value of such radiation was determined by its exergy and the ratio of its exergy-to-energy. A novelty in this work is to demonstrate by means of exergy that the usefulness of thermal polychromatic radiation can be increased by its dispersion to monochromatic radiation. This effect is the greater, the lower the temperature of the radiation. Analogies of this effect to the exergetic effect of gas separation have been indicated. The effect of the increase in exergy in the process of radiation dispersion was interpreted by means of a cylinder-piston system that explains this effect with the influence of environmental radiation. The concept of quasi-monochromatic and cumulated radiation was introduced into dispersion considerations and the change in the energetic, entropic and environmental components of the exergy of radiation beams was analyzed. Considerations were illustrated with appropriate examples of calculations considering dispersion of high-temperature radiation, such as extraterrestrial solar radiation and dispersion of low-temperature radiation from water vapor.展开更多
To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exer...To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exergy balance model was built. The working processes of gasoline engine were simulated by using the GT-power. In this way, the required parameters were calculated and then gasoline engine exergy balance was obtained by programming on computer. On this basis, the influences of various parameters on exergy balance were analyzed. Results show that, the proportions of various forms of exergy in gasoline engine from high to low are irreversible loss, effective work, exhaust gas exergy and heat transfer exergy. Effective exergy proportion fluctuates with cylinder volumetric efficiency at full load, while it always increases with break mean effective pressure (BMEP) at part load. Exhaust gas exergy proportion is more sensitive to speed, and it increases with speed increasing except at the highest speed. The lower proportion of heat transfer exergy appears at high speed and high load. Irreversible loss is mainly influenced by load. At part load, higher BMEP results in lower proportion of irreversible loss; at full load, the proportion of irreversible loss changes little except at the highest speed.展开更多
Exhaust hot water(EHW)is widely used for various industrial processes.However,the excess heat carried by EHW is typically ignored and discharged into the environment,resulting in heat loss and heat pollution.An organi...Exhaust hot water(EHW)is widely used for various industrial processes.However,the excess heat carried by EHW is typically ignored and discharged into the environment,resulting in heat loss and heat pollution.An organic Rankine cycle(ORC)is an attractive technology to recycle heat from low-temperature energy carriers.Herein,ORC was used to recycle the heat carried by EHW.To investigate the energy and exergy recovery effects of EHW,a mathematical model was developed and a parametric study was conducted.The energy efficiency and exergy efficiency of the EHW-driven ORC system were modeled with R245fa,R113 and R123 as the working fluids.The results demonstrate that the EHW and evaporation temperatures have significant effects on the energy and exergy efficiencies of the EHW-driven ORC system.Under given EHW conditions,an optimum evaporation temperature exists corresponding to the highest exergy efficiency.To further use the low-temperature EHW,a configuration retrofitted to the ORC by combining with flash evaporation(FE)was conducted.For an EHW at 120℃ and 0.2 MPa,the maximum exergy efficiency of the FE-ORC system is 45.91%at a flash pressure of 0.088 MPa.The FE-ORC performs better in exergy efficiency than the basic FE and basic EHW-driven ORC.展开更多
This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program A...This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program Aspen Plus. The results indicate that the most important destruction of exergy is found to occur in the reactor and water quenching scrubber, amounting to 8.23% and 10.39%, respectively, of the entire system. Based on the results of thermodynamic and exergy analysis, the acetylene reactor has been retrofitted. The improvement ratios of molar 02 to CH4 and molar CO to CN4 are 0.65 and 0.20, respectively. An improvement of the acetylene production system is proposed. Adopting the improvement operation conditions and using oil to realize the reaction heat recovery, the feedstock of natural gas is reduced by 9.88% and the exergy loss in the retrofitting process is decreased by 19.71% compared to the original process.展开更多
The thermodynamic theories and ecological theories can be integrated effectively by exergy(biogeochemical energy of the system) to study the environmental problems of the lakes and reservoirs. In this paper, the appl...The thermodynamic theories and ecological theories can be integrated effectively by exergy(biogeochemical energy of the system) to study the environmental problems of the lakes and reservoirs. In this paper, the applications of exergy in the ecological modelling of lake environment were reviewed. Results showed that exergy can be used as a goal function to estimate the parameters of the ecological model for lakes and reservoirs and to develop the structural dynamic models accounting for the changes in lake ecosystems, and as an ecological indicators for the development and evolution of lake ecosystems.展开更多
Improving the primary steam parameters is one of the most direct ways to improve the cycle efficiency of a powergeneration system. In the present study, the typical problem connected to the excessively high superheat ...Improving the primary steam parameters is one of the most direct ways to improve the cycle efficiency of a powergeneration system. In the present study, the typical problem connected to the excessively high superheat degree ofextraction steam in an ultra-supercritical (USC) double-reheat unit is considered. Using a 1000 MW power plantas an example, two systems (case 1 and case 2) are proposed, both working in combination with a regenerativesteam turbine. The thermal performances of these two systems are compared with that of the original systemthrough a heat balance method and an exergy balance strategy. The results reveal that the two coupled systemscan significantly reduce the superheat degree of extraction steam, turbine heat rate, and coal consumption of theunit and improve the energy utilization efficiency. These results will provide useful theoretical guidance to futureinvestigators wishing to address the general problem relating to energy conservation and modelling of the coupledextraction steam regenerative system of USC double-reheat units.展开更多
基金the financial support for this work provided by the National Natural Science Foundation of China(51974087)Anhui Provincial Natural Science Foundation(1908085QE203)+1 种基金University Natural Science Research Foundation of Anhui Province(2022AH050262)Science Research Foundation of Anhui Jianzhu University(2020QDZ02).
文摘To further enhance the recovery rate of low-temperature waste heat,the low-temperature flue gas in the sinter annular cooler was chosen as the heat source of an organic Rankine cycle(ORC)system,and the comprehensive evaluation of energy,exergy and economic performance of the ORC system was conducted deeply.The energy,exergy and economic performance models of the ORC system were established,and proper candidate organic working fluids(OWFs)were selected based on the thermo-physical properties of OWF and operating characteristics of ORC system.Then,the effects of ORC crucial parameters on the system energy,exergy and economic performances were evaluated in detail.Finally,the bi-objective optimization based on the genetic algorithm was conducted to analyze the optimal performance of the ORC system under the designed ORC crucial parameters,and the exergy efficiency and electricity production cost were set as the evaluation indexes of parametric optimization.The results indicate that the ORC system with the higher evaporation temperature and lower condensation temperature can obtain the larger system exergy efficiency and smaller electricity production cost.The smaller the superheat degree of OWF and pinch-point temperature difference in the evaporator are,the better the energy and exergy performances of the ORC system are.Under the optimization results,R245fa has the best comprehensive performance with the exergy efficiency of 46.34%and electricity production cost of 0.12123$/kWh among the selected candidate OWFs,which should be preferentially chosen as the OWF of the ORC system.
基金supported by the China Postdoctoral Science Foundation(Grant number:370140).
文摘After long-term operation,the performance of components in the GTCC system deteriorates and requires timely maintenance.Due to the inability to directly measure the degree of component malfunction,it is necessary to use advanced exergy analysis diagnosis methods to characterize the components’health condition(degree of malfunction)through operation data of the GTCC system.The dissipative temperature is used to describe the degree of malfunction of different components in the GTCC system,and an advanced exergy analysis diagnostic method is used to establish a database of overall operating condition component malfunctions in theGTCC system.Ebsilon software is used to simulate the critical parameters of the malfunctions of the GTCC system components and to obtain the changes in the dissipative temperature of different components.Meanwhile,the fuel consumption and economic changes of the GTCC system on a characteristic power supply day under health and malfunction conditions are analyzed.Finally,the effects of maintenance costs,electricity,and gas prices on maintenance expenses and profits are analyzed.The results show that the GTCC system maintenance profit is 6.07$/MWh,while the GTCC system maintenance expense is 5.83$/MWh.Compared with the planned maintenancemode,the malfunction maintenance mode saves 0.24$/MWh.Simultaneously,the maintenance coefficient of GTCC should be adjusted under different malfunctions to obtain a more accurate maintenance period.
文摘In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of hope,offering a sustainable and environmentally friendly solution to desalination.Solar distillation technology,harnessing the power of the sun,transforms seawater into freshwater,expanding the availability of this precious resource.Optimizing solar still performance under specific climatic conditions and evaluating different configurations is crucial for practical implementation and widespread adoption of solar energy.In this study,we conducted theoretical investigations on three distinct solar still configurations to evaluate their performance under Baghdad’s climatic conditions.The solar stills analyzed include the passive solar still,themodified solar still coupled with a magnetic field,and themodified solar still coupled with bothmagnetic and electrical fields.The results proved that the evaporation heat transfer coefficient peaked at 14:00,reaching 25.05 W/m^(2).℃for the convention pyramid solar still(CPSS),32.33 W/m^(2).℃for the magnetic pyramid solar still(MPSS),and 40.98 W/m^(2).℃for elecro-magnetic pyramid solar still(EMPSS),highlighting their efficiency in converting solar energy to vapor.However,exergy efficiency remained notably lower,at 1.6%,5.31%,and 7.93%for the three still types,even as energy efficiency reached its maximum of 18.6%at 14:00 with a corresponding peak evaporative heat of 162.4 W/m^(2).
文摘Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.
文摘To decrease energy consumption of ladle furnace, exergy analysis and optimization were conducted based on the ladle furnace refining process of modern clean steelmaking. Exergy analysis results showed that exergy loss induced by unavailable electric energy is the largest, and the electric energy efficiency is 46.20%. To cut down the unavailable electric energy, industrial experiments of submerged arc heating were carried out combined with slag composition modification. Results showed that submerged arc heating can be achieved within most heating period, average heating rate increased by 0. 5 ℃/min, unavailable electric energy decreased by 21. 730 MJ per ton steel, and electric energy efficiency was enhanced by 14.84 %. As the refining cycle was shortened, the exergy loss induced by heat elimination decreased from 19. 455 MJ per ton steel to 11. 066 MJ per ton steel.
基金Strategic Priority Research Program of the Chinese Academy of Sciences, No.XDA05010400 National Natural Science Foundation of China, No.41271547, No.41401644
文摘Factory-level data from 23 provinces and some national statistical data in cement manufacturing industry and socio-economies in 2012 are used to analyze the spatial distribution of exergy use for China's cement manufacturing industry by the Extended Exergy Accounting method. This method takes full account of the inclusion of energy and raw material supply and other external factors (capital, labor and environment) into a comprehensive resource cost assessment. The extended exergy consumption and its intensity quantitatively at the provincial levels of cement production were calculated and then the agglomeration level of exergy use at the regional level was also evaluated. Based on this analysis, their spatial difference in size and efficiency of exergy use at the provincial level were identified. Moreover, their regional characteristics were revealed. Some important results could be drawn as follows. First, the invisible social cost accounted for 1/10 of the total exergy use in cement manufacturing industry, while the energy element shared about 9/10. Second, the gross distribution of exergy use in China's cement manufacturing industry was mainly concentrated in the eastern region like Anhui and Shandong provinces, and in the western region like Sichuan province. In terms of exergy use, the coal and electricity were the highest of energy costs in the eastern region, whereas the cost of capital, labor and external environmental factors highlighted the invisible social cost for cement production in the central and western regions to some extent. Third, the efficiency distribution of exergy use in China's cement manufacturing industry illustrated an incremental feature from west to east, especially for the energy, labor and capital efficiencies. An evaluation on the environmental efficiency indicated that provinces or regions like Tibet, Xinjiang, Inner Mongolia and Shanxi have undertaken much higher environmental costs. Fourth, the 23 provinces could be classified into eight groups by the Euclidean distance model using the gross and efficiency results of exergy use. Fifth, the high industry concentration degree is the main driving factor of exergy efficiency improvement for cement manufacturing industry in China.
基金Supported by the National Natural Science Foundation of China(61590924,61673273,61521063)
文摘Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steadystate optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.
文摘Energy determines the ability of matter to work. However, in the given environment, the real usefulness to perform work is determined by exergy. This study covers not only solar, but also any monochromatic thermal radiation. The value of such radiation was determined by its exergy and the ratio of its exergy-to-energy. A novelty in this work is to demonstrate by means of exergy that the usefulness of thermal polychromatic radiation can be increased by its dispersion to monochromatic radiation. This effect is the greater, the lower the temperature of the radiation. Analogies of this effect to the exergetic effect of gas separation have been indicated. The effect of the increase in exergy in the process of radiation dispersion was interpreted by means of a cylinder-piston system that explains this effect with the influence of environmental radiation. The concept of quasi-monochromatic and cumulated radiation was introduced into dispersion considerations and the change in the energetic, entropic and environmental components of the exergy of radiation beams was analyzed. Considerations were illustrated with appropriate examples of calculations considering dispersion of high-temperature radiation, such as extraterrestrial solar radiation and dispersion of low-temperature radiation from water vapor.
基金Foundation item: Project(2011CB707201) supported by the National Basic Research Program of China Project(10JJ5058) supported by the Natural Science Foundation of Hunan Province, China
文摘To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exergy balance model was built. The working processes of gasoline engine were simulated by using the GT-power. In this way, the required parameters were calculated and then gasoline engine exergy balance was obtained by programming on computer. On this basis, the influences of various parameters on exergy balance were analyzed. Results show that, the proportions of various forms of exergy in gasoline engine from high to low are irreversible loss, effective work, exhaust gas exergy and heat transfer exergy. Effective exergy proportion fluctuates with cylinder volumetric efficiency at full load, while it always increases with break mean effective pressure (BMEP) at part load. Exhaust gas exergy proportion is more sensitive to speed, and it increases with speed increasing except at the highest speed. The lower proportion of heat transfer exergy appears at high speed and high load. Irreversible loss is mainly influenced by load. At part load, higher BMEP results in lower proportion of irreversible loss; at full load, the proportion of irreversible loss changes little except at the highest speed.
基金Projects(51704069,51734004,71403175)supported by the National Natural Science Foundation of ChinaProject(N162504011)supported by the Fundamental Research Funds for the Central Universities,China
文摘Exhaust hot water(EHW)is widely used for various industrial processes.However,the excess heat carried by EHW is typically ignored and discharged into the environment,resulting in heat loss and heat pollution.An organic Rankine cycle(ORC)is an attractive technology to recycle heat from low-temperature energy carriers.Herein,ORC was used to recycle the heat carried by EHW.To investigate the energy and exergy recovery effects of EHW,a mathematical model was developed and a parametric study was conducted.The energy efficiency and exergy efficiency of the EHW-driven ORC system were modeled with R245fa,R113 and R123 as the working fluids.The results demonstrate that the EHW and evaporation temperatures have significant effects on the energy and exergy efficiencies of the EHW-driven ORC system.Under given EHW conditions,an optimum evaporation temperature exists corresponding to the highest exergy efficiency.To further use the low-temperature EHW,a configuration retrofitted to the ORC by combining with flash evaporation(FE)was conducted.For an EHW at 120℃ and 0.2 MPa,the maximum exergy efficiency of the FE-ORC system is 45.91%at a flash pressure of 0.088 MPa.The FE-ORC performs better in exergy efficiency than the basic FE and basic EHW-driven ORC.
基金Supported by the National Natural Science Foundation of China (90210032, 50576001).
文摘This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program Aspen Plus. The results indicate that the most important destruction of exergy is found to occur in the reactor and water quenching scrubber, amounting to 8.23% and 10.39%, respectively, of the entire system. Based on the results of thermodynamic and exergy analysis, the acetylene reactor has been retrofitted. The improvement ratios of molar 02 to CH4 and molar CO to CN4 are 0.65 and 0.20, respectively. An improvement of the acetylene production system is proposed. Adopting the improvement operation conditions and using oil to realize the reaction heat recovery, the feedstock of natural gas is reduced by 9.88% and the exergy loss in the retrofitting process is decreased by 19.71% compared to the original process.
文摘The thermodynamic theories and ecological theories can be integrated effectively by exergy(biogeochemical energy of the system) to study the environmental problems of the lakes and reservoirs. In this paper, the applications of exergy in the ecological modelling of lake environment were reviewed. Results showed that exergy can be used as a goal function to estimate the parameters of the ecological model for lakes and reservoirs and to develop the structural dynamic models accounting for the changes in lake ecosystems, and as an ecological indicators for the development and evolution of lake ecosystems.
基金the Shandong Electric Power Engineering Consulting Institute science and technology project(Grant No.37-K2014-33).
文摘Improving the primary steam parameters is one of the most direct ways to improve the cycle efficiency of a powergeneration system. In the present study, the typical problem connected to the excessively high superheat degree ofextraction steam in an ultra-supercritical (USC) double-reheat unit is considered. Using a 1000 MW power plantas an example, two systems (case 1 and case 2) are proposed, both working in combination with a regenerativesteam turbine. The thermal performances of these two systems are compared with that of the original systemthrough a heat balance method and an exergy balance strategy. The results reveal that the two coupled systemscan significantly reduce the superheat degree of extraction steam, turbine heat rate, and coal consumption of theunit and improve the energy utilization efficiency. These results will provide useful theoretical guidance to futureinvestigators wishing to address the general problem relating to energy conservation and modelling of the coupledextraction steam regenerative system of USC double-reheat units.