Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid...Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.展开更多
A formulation for the prediction of the influence of various parameters on the elastic moduli of three-dimensional (3D) orthogonally woven composites has been given. These parameters can be classified into different...A formulation for the prediction of the influence of various parameters on the elastic moduli of three-dimensional (3D) orthogonally woven composites has been given. These parameters can be classified into different groups according to their properties, such as input design and material parameters, structural parameters etc. Some, by their nature, can be well controlled during the design and manufacture of the composite. The composite is assumed to be homogeneous and orthotropic macroscopically. With a selected representative unit cell and the stiffness model developed by author in 2000, the influence of all of these parameters can be determined. Results showing the influence of the main design geometric parameters are presented. They demonstrate that an optimal design is possible for the through-the-thickness stiffness of the composites. The methodology used can be generalized to predict the behavior of other kinds of 3D woven structures.展开更多
This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that...This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that are related and unrelated to symmetric information. In addition, some exact solutions with particular forms are obtained according to the method of conservation laws. These particular solutions are different from the group-invariant solutions.展开更多
The analysis of kinematics and dynamics of an elastic rod with circular cross section is studied on the basis of exact Cosserat model under consideration of the tension and shear deformation of the rod. The dynamical ...The analysis of kinematics and dynamics of an elastic rod with circular cross section is studied on the basis of exact Cosserat model under consideration of the tension and shear deformation of the rod. The dynamical equations of a rod with arbitrary initial shape are established in general form. The dynamics of a straight rod under axial tension and torsion is discussed as an example. In discussion of static stability in the space domain the Greenhill criteria of stability and the Euler load are corrected by the influence of tension and shear strain. In analysis of dynamical stability in the time domain it is shown that the Lyapunov and Euler stability conditions of the rod in space domain are the necessary conditions of Lyapunov's stability in the time domain. The longitudinal, torsional and lateral vibrations of a straight rod based on exact model are discussed, and an exact formula of free frequency of lateral vibration is obtained. The free frequency formulas of various simplified models, such as the Rayleigh beam, the Kirchhoff rod, and the Timoshenko beam, can be seen as special cases of the exact formula under different conditions of simplification.展开更多
Most of the near-field source localization methods are developed with the approximated signal model,because the phases of the received near-field signal are highly non-linear.Nevertheless,the approximated signal model...Most of the near-field source localization methods are developed with the approximated signal model,because the phases of the received near-field signal are highly non-linear.Nevertheless,the approximated signal model based methods suffer from model mismatch and performance degradation while the exact signal model based estimation methods usually involve parameter searching or multiple decomposition procedures.In this paper,a search-free near-field source localization method is proposed with the exact signal model.Firstly,the approximative estimates of the direction of arrival(DOA)and range are obtained by using the approximated signal model based method through parameter separation and polynomial rooting operations.Then,the approximative estimates are corrected with the exact signal model according to the exact expressions of phase difference in near-field observations.The proposed method avoids spectral searching and parameter pairing and has enhanced estimation performance.Numerical simulations are provided to demonstrate the effectiveness of the proposed method.展开更多
Helical equilibrium of a thin elastic rod has practical backgrounds, such as DNA, fiber, sub-ocean cable, and oil-well drill string. Kirchhoff's kinetic analogy is an effective approach to the stability analysis of e...Helical equilibrium of a thin elastic rod has practical backgrounds, such as DNA, fiber, sub-ocean cable, and oil-well drill string. Kirchhoff's kinetic analogy is an effective approach to the stability analysis of equilibrium of a thin elastic rod. The main hypotheses of Kirchhoff's theory without the extension of the centerline and the shear deformation of the cross section are not adoptable to real soft materials of biological fibers. In this paper, the dynamic equations of a rod with a circular cross section are established on the basis of the exact Cosserat model by considering the tension and the shear deformations. Euler's angles are applied as the attitude representation of the cross section. The deviation of the normal axis of the cross section from the tangent of the centerline is considered as the result of the shear deformation. Lyapunov's stability of the helical equilibrium is discussed in static category. Euler's critical values of axial force and torque are obtained. Lyapunov's and Euler's stability conditions in the space domain are the necessary conditions of Lyapunov's stability of the helical rod in the time domain.展开更多
The present study has obtained the new model of the reservoir filtration problem by taking into account the effect of wellbore storage and skin and by making use of the coupled equations of doubled porous media filtra...The present study has obtained the new model of the reservoir filtration problem by taking into account the effect of wellbore storage and skin and by making use of the coupled equations of doubled porous media filtration and consequently has got, through various forms of limits, the exact analytical solutions of the three common reservoirs (fissure, homogeneous and the two-layered) pressure distribution under the conditions of three boundaries, i.e., infinite boundary, sealed finite boundary and the finite boundary at constant pressures.展开更多
In this paper, the generalized Oldroyd-B with fractional calculus approach is used. An exact solution in terms of Fox-H function for flow past an accelerated horizontal plate in a rotating fluid is obtained by using d...In this paper, the generalized Oldroyd-B with fractional calculus approach is used. An exact solution in terms of Fox-H function for flow past an accelerated horizontal plate in a rotating fluid is obtained by using discrete Laplace transform method. A comparison among the influence of various parameters in the Oldroyd-B model and the angular velocity of the fluid on the velocity profiles is made through numerical method in graphic form.展开更多
By using a two-mode mean-field approximation, we study the dynamics of the microcavities containing semiconductor quantum wells. The exact analytical solutions are obtained in this study. Based on these solutions, we ...By using a two-mode mean-field approximation, we study the dynamics of the microcavities containing semiconductor quantum wells. The exact analytical solutions are obtained in this study. Based on these solutions, we show that the emission from the microcavity manifests periodic oscillation behaviour and the oscillation can be suppressed under a certain condition.展开更多
In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multi...In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multiphase flow problem. Those sym- metries are used for the governing system of equations to obtain infinitesimal transforma- tions, which consequently reduces the governing system of PDEs to a system of ODEs. Further, the solutions of the system of ODEs which in turn produces some exact solutions for the PDEs are presented. Finally, the evolutionary behavior of weak discontinuity is discussed.展开更多
Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain ...Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain some authors' results known. Secondly, by using a series of transformations, the model is reduced into a nonlinear reaction diffusion equation and then through using sine-cosine method, more exact solutions are found which contain soliton solutions.展开更多
In this paper, analysis of post-treatment of wire coating is presented. Coating material satisfies power law fluid model. Exact solutions for the velocity field, volume flow rate and average velocity are obtained. Mor...In this paper, analysis of post-treatment of wire coating is presented. Coating material satisfies power law fluid model. Exact solutions for the velocity field, volume flow rate and average velocity are obtained. Moreover, the heat transfer results are presented for different cases of linearly varying on the boundaries. The variations of velocity, volume flow rate, radius of coated wire, shear rate and the force on the total wire are presented graphically and discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.12072119,12325201,and 52205594)the China National Postdoctoral Program for Innovative Talents (No.BX20220118)。
文摘Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.
基金the financial support from UK/China fellowships for Excellence programme(provided by the UK and China governments)the School of Civil Engineering,Hefei University of Technology,for administrative support in preparing this paper
文摘A formulation for the prediction of the influence of various parameters on the elastic moduli of three-dimensional (3D) orthogonally woven composites has been given. These parameters can be classified into different groups according to their properties, such as input design and material parameters, structural parameters etc. Some, by their nature, can be well controlled during the design and manufacture of the composite. The composite is assumed to be homogeneous and orthotropic macroscopically. With a selected representative unit cell and the stiffness model developed by author in 2000, the influence of all of these parameters can be determined. Results showing the influence of the main design geometric parameters are presented. They demonstrate that an optimal design is possible for the through-the-thickness stiffness of the composites. The methodology used can be generalized to predict the behavior of other kinds of 3D woven structures.
文摘This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that are related and unrelated to symmetric information. In addition, some exact solutions with particular forms are obtained according to the method of conservation laws. These particular solutions are different from the group-invariant solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10472067)
文摘The analysis of kinematics and dynamics of an elastic rod with circular cross section is studied on the basis of exact Cosserat model under consideration of the tension and shear deformation of the rod. The dynamical equations of a rod with arbitrary initial shape are established in general form. The dynamics of a straight rod under axial tension and torsion is discussed as an example. In discussion of static stability in the space domain the Greenhill criteria of stability and the Euler load are corrected by the influence of tension and shear strain. In analysis of dynamical stability in the time domain it is shown that the Lyapunov and Euler stability conditions of the rod in space domain are the necessary conditions of Lyapunov's stability in the time domain. The longitudinal, torsional and lateral vibrations of a straight rod based on exact model are discussed, and an exact formula of free frequency of lateral vibration is obtained. The free frequency formulas of various simplified models, such as the Rayleigh beam, the Kirchhoff rod, and the Timoshenko beam, can be seen as special cases of the exact formula under different conditions of simplification.
基金supported by the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space(KF20202109)the National Natural Science Foundation of China(82004259)the Young Talent Training Project of Guangzhou University of Chinese Medicine(QNYC20190110).
文摘Most of the near-field source localization methods are developed with the approximated signal model,because the phases of the received near-field signal are highly non-linear.Nevertheless,the approximated signal model based methods suffer from model mismatch and performance degradation while the exact signal model based estimation methods usually involve parameter searching or multiple decomposition procedures.In this paper,a search-free near-field source localization method is proposed with the exact signal model.Firstly,the approximative estimates of the direction of arrival(DOA)and range are obtained by using the approximated signal model based method through parameter separation and polynomial rooting operations.Then,the approximative estimates are corrected with the exact signal model according to the exact expressions of phase difference in near-field observations.The proposed method avoids spectral searching and parameter pairing and has enhanced estimation performance.Numerical simulations are provided to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Fundation of China(No.10972143)
文摘Helical equilibrium of a thin elastic rod has practical backgrounds, such as DNA, fiber, sub-ocean cable, and oil-well drill string. Kirchhoff's kinetic analogy is an effective approach to the stability analysis of equilibrium of a thin elastic rod. The main hypotheses of Kirchhoff's theory without the extension of the centerline and the shear deformation of the cross section are not adoptable to real soft materials of biological fibers. In this paper, the dynamic equations of a rod with a circular cross section are established on the basis of the exact Cosserat model by considering the tension and the shear deformations. Euler's angles are applied as the attitude representation of the cross section. The deviation of the normal axis of the cross section from the tangent of the centerline is considered as the result of the shear deformation. Lyapunov's stability of the helical equilibrium is discussed in static category. Euler's critical values of axial force and torque are obtained. Lyapunov's and Euler's stability conditions in the space domain are the necessary conditions of Lyapunov's stability of the helical rod in the time domain.
文摘The present study has obtained the new model of the reservoir filtration problem by taking into account the effect of wellbore storage and skin and by making use of the coupled equations of doubled porous media filtration and consequently has got, through various forms of limits, the exact analytical solutions of the three common reservoirs (fissure, homogeneous and the two-layered) pressure distribution under the conditions of three boundaries, i.e., infinite boundary, sealed finite boundary and the finite boundary at constant pressures.
基金supported by The project supported by the Natural Science Foundation of Shandong Province of China (Y2007A06)
文摘In this paper, the generalized Oldroyd-B with fractional calculus approach is used. An exact solution in terms of Fox-H function for flow past an accelerated horizontal plate in a rotating fluid is obtained by using discrete Laplace transform method. A comparison among the influence of various parameters in the Oldroyd-B model and the angular velocity of the fluid on the velocity profiles is made through numerical method in graphic form.
基金Project supported in part by the Natural Science Foundation of China (Grant Nos. 10575040,90503010,10634060 and 10874050)by National Basic Research Program of China (Grant No. 2005CB724508)+1 种基金the Foundation from the ministry of the National Education of China (Grant No. 200804870051)the Science Innovation Foundation of Huazhong University of Science and Technology (Grant No. HF-06-010-08-012)
文摘By using a two-mode mean-field approximation, we study the dynamics of the microcavities containing semiconductor quantum wells. The exact analytical solutions are obtained in this study. Based on these solutions, we show that the emission from the microcavity manifests periodic oscillation behaviour and the oscillation can be suppressed under a certain condition.
基金Project supported by the Ministry of Minority Affairs through UGC,Government of India(No.F1-17.1/2010/MANF-CHR-ORI-1839)the Industrial Consultancy,IIT Kharagpur(No.IIT/SRIC/ISIRD/2013-14)
文摘In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multiphase flow problem. Those sym- metries are used for the governing system of equations to obtain infinitesimal transforma- tions, which consequently reduces the governing system of PDEs to a system of ODEs. Further, the solutions of the system of ODEs which in turn produces some exact solutions for the PDEs are presented. Finally, the evolutionary behavior of weak discontinuity is discussed.
基金国家自然科学基金,NKBRD of China,Doctor Foundation of Education Commission of China
文摘Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain some authors' results known. Secondly, by using a series of transformations, the model is reduced into a nonlinear reaction diffusion equation and then through using sine-cosine method, more exact solutions are found which contain soliton solutions.
文摘In this paper, analysis of post-treatment of wire coating is presented. Coating material satisfies power law fluid model. Exact solutions for the velocity field, volume flow rate and average velocity are obtained. Moreover, the heat transfer results are presented for different cases of linearly varying on the boundaries. The variations of velocity, volume flow rate, radius of coated wire, shear rate and the force on the total wire are presented graphically and discussed.