In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct...In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types.展开更多
Multi-firmware comparison techniques can improve efficiency when auditing firmwares in bulk.How-ever,the problem of matching functions between multiple firmwares has not been studied before.This paper proposes a multi...Multi-firmware comparison techniques can improve efficiency when auditing firmwares in bulk.How-ever,the problem of matching functions between multiple firmwares has not been studied before.This paper proposes a multi-firmware comparison method based on evolutionary algorithms and trusted base points.We first model the multi-firmware comparison as a multi-sequence matching problem.Then,we propose an adaptation function and a population generation method based on trusted base points.Finally,we apply an evolutionary algorithm to find the optimal result.At the same time,we design the similarity of matching results as an evaluation metric to measure the effect of multi-firmware comparison.The experiments show that the proposed method outperforms Bindiff and the string-based method.Precisely,the similarity between the matching results of the proposed method and Bindiff matching results is 61%,and the similarity between the matching results of the proposed method and the string-based method is 62.8%.By sampling and manual verification,the accuracy of the matching results of the proposed method can be about 66.4%.展开更多
In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classificati...In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency.展开更多
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w...Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluat...In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluation model for the " normalized values" of multi-indexes.The parameters in the formula were also optimized by bee immune evolutionary algorithm(BEIEA).The universal index formula was suitable to multiindices items for eutrophic evaluation.At the same time,the formula was applied to practical eutrophic evaluations in 10 regions of Dong Lake.The evaluation results were coincident with those obtained from the power function of weighted sums and also with actual conditions.It was shown that the bee immune evolutionary algorithm was suitable to the parameter optimization in the eutrophic evaluation model.展开更多
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio...In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.展开更多
Technical debt(TD)happens when project teams carry out technical decisions in favor of a short-term goal(s)in their projects,whether deliberately or unknowingly.TD must be properly managed to guarantee that its negati...Technical debt(TD)happens when project teams carry out technical decisions in favor of a short-term goal(s)in their projects,whether deliberately or unknowingly.TD must be properly managed to guarantee that its negative implications do not outweigh its advantages.A lot of research has been conducted to show that TD has evolved into a common problem with considerable financial burden.Test technical debt is the technical debt aspect of testing(or test debt).Test debt is a relatively new concept that has piqued the curiosity of the software industry in recent years.In this article,we assume that the organization selects the testing artifacts at the start of every sprint.Implementing the latest features in consideration of expected business value and repaying technical debt are among candidate tasks in terms of the testing process(test cases increments).To gain the maximum benefit for the organization in terms of software testing optimization,there is a need to select the artifacts(i.e.,test cases)with maximum feature coverage within the available resources.The management of testing optimization for large projects is complicated and can also be treated as a multi-objective problem that entails a trade-off between the agile software’s short-term and long-term value.In this article,we implement a multi-objective indicatorbased evolutionary algorithm(IBEA)for fixing such optimization issues.The capability of the algorithm is evidenced by adding it to a real case study of a university registration process.展开更多
The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field,in which the basic element of evolution is the set in the soluti...The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field,in which the basic element of evolution is the set in the solution space,rather than the point.The paper defines the Cell Evolutionary Algorithm,which implements such a view of the evolution mechanism.First,the optimal set in which the optimal solution may be obtained.Then this approach applies the embedded search method to get the optimal solution.We tested this approach on the atomic structure,and the results show that it can improve not only the efficiency but also the accuracy of the calculations as it relates to this specific problem.展开更多
In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation character...In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method.展开更多
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed...Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.展开更多
A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good...A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good performance. The computation results show that its generality, precision, robustness, simplicity and performance are all satisfactory.展开更多
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes...Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems....Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems. These efforts produced a deeper understanding of how EAs perform on different kinds of fitness landscapes and general mathematical tools that may be extended to the analysis of more complicated EAs on more realistic problems. In fact, in recent years, it has been possible to analyze the (1+1)-EA on combinatorial optimization problems with practical applications and more realistic population-based EAs on structured toy problems. This paper presents a survey of the results obtained in the last decade along these two research lines. The most common mathematical techniques are introduced, the basic ideas behind them are discussed and their elective applications are highlighted. Solved problems that were still open are enumerated as are those still awaiting for a solution. New questions and problems arisen in the meantime are also considered.展开更多
This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global sea...This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global search and local search in each sub-domain, the former enables individual to draw closer to each optima and keeps the diversity of individuals, while the latter selects local optimal solutions known as latent solutions in sub-domain. In the end, by selecting the global optimal solutions from latent solutions in each sub-domain, we can discover all the optimal solutions easily and quickly.展开更多
The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problem...The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problems that easily appear during the model solution of regional water resource optimal allocation with multiple water sources,multiple users and multiple objectives like"curse of dimensionality"or sinking into local optimum,this paper proposes a particle swarm optimization(PSO)algorithm based on immune evolutionary algorithm(IEA).This algorithm introduces immunology principle into particle swarm algorithm.Its immune memorizing and self-adjusting mechanism is utilized to keep the particles in the fitness level at a certain concentration and guarantee the diversity of population.Also,the global search characteristics of IEA and the local search capacity of particle swarm algorithm have been fully utilized to overcome the dependence of PSO on initial swarm and the deficiency of vulnerability to local optimum.After applying this model to the allocation of water resources in Zhoukou,we obtain the scheme for optimization allocation of water resources in the planning level years,i.e.2015and 2025 under the guarantee rate of 50%.The calculation results indicate that the application of this algorithm to solve the issue of optimal allocation of regional water resources is reliable and reasonable.Thus it ofers a new idea for solving the issue of optimal allocation of water resources.展开更多
Application of the multiobjective evolutionary algorithms to the aerodynamicoptimization design of a centrifugal impeller is presented. The aerodynamic performance of acentrifugal impeller is evaluated by using the th...Application of the multiobjective evolutionary algorithms to the aerodynamicoptimization design of a centrifugal impeller is presented. The aerodynamic performance of acentrifugal impeller is evaluated by using the three-dimensional Navier-Stokes solutions. Thetypical centrifugal impeller is redesigned for maximization of the pressure rise and blade load andminimization of the rotational total pressure loss at the given flow conditions. The Bezier curvesare used to parameterize the three-dimensional impeller blade shape. The present method obtains manyreasonable Pareto optimal designs that outperform the original centrifugal impeller. Detailedobservation of the certain Pareto optimal design demonstrates the feasibility of the presentmultiobjective optimization method tool for turbomachinery design.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12475174 and 12175101)Yue Lu Shan Center Industrial Innovation(No.2024YCII0108)。
文摘In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types.
文摘Multi-firmware comparison techniques can improve efficiency when auditing firmwares in bulk.How-ever,the problem of matching functions between multiple firmwares has not been studied before.This paper proposes a multi-firmware comparison method based on evolutionary algorithms and trusted base points.We first model the multi-firmware comparison as a multi-sequence matching problem.Then,we propose an adaptation function and a population generation method based on trusted base points.Finally,we apply an evolutionary algorithm to find the optimal result.At the same time,we design the similarity of matching results as an evaluation metric to measure the effect of multi-firmware comparison.The experiments show that the proposed method outperforms Bindiff and the string-based method.Precisely,the similarity between the matching results of the proposed method and Bindiff matching results is 61%,and the similarity between the matching results of the proposed method and the string-based method is 62.8%.By sampling and manual verification,the accuracy of the matching results of the proposed method can be about 66.4%.
基金funded by the Ministry of Higher Education of Malaysia,grant number FRGS/1/2022/ICT02/UPSI/02/1.
文摘In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency.
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
基金via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2023/R/1444).
文摘Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
基金Supported by Science and Technology Basic Special Project(2009IM020100)National Natural Science Foundation of China(5077904250739002)~~
文摘In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluation model for the " normalized values" of multi-indexes.The parameters in the formula were also optimized by bee immune evolutionary algorithm(BEIEA).The universal index formula was suitable to multiindices items for eutrophic evaluation.At the same time,the formula was applied to practical eutrophic evaluations in 10 regions of Dong Lake.The evaluation results were coincident with those obtained from the power function of weighted sums and also with actual conditions.It was shown that the bee immune evolutionary algorithm was suitable to the parameter optimization in the eutrophic evaluation model.
基金Projects(20976048, 21176072) supported by the National Natural Science Foundation of ChinaProject provided by the Fundamental Research Fund for Central Universities
文摘In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.
基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQUyouracademicnumberDSRxx).
文摘Technical debt(TD)happens when project teams carry out technical decisions in favor of a short-term goal(s)in their projects,whether deliberately or unknowingly.TD must be properly managed to guarantee that its negative implications do not outweigh its advantages.A lot of research has been conducted to show that TD has evolved into a common problem with considerable financial burden.Test technical debt is the technical debt aspect of testing(or test debt).Test debt is a relatively new concept that has piqued the curiosity of the software industry in recent years.In this article,we assume that the organization selects the testing artifacts at the start of every sprint.Implementing the latest features in consideration of expected business value and repaying technical debt are among candidate tasks in terms of the testing process(test cases increments).To gain the maximum benefit for the organization in terms of software testing optimization,there is a need to select the artifacts(i.e.,test cases)with maximum feature coverage within the available resources.The management of testing optimization for large projects is complicated and can also be treated as a multi-objective problem that entails a trade-off between the agile software’s short-term and long-term value.In this article,we implement a multi-objective indicatorbased evolutionary algorithm(IBEA)for fixing such optimization issues.The capability of the algorithm is evidenced by adding it to a real case study of a university registration process.
基金Supported by the opening Foundation of state key Laborstory of Magnetic ResonanceAtomic and Molecularphysics,Wuhan Institute of physica,Chinese Acsdemy of Sciences(981510)
文摘The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field,in which the basic element of evolution is the set in the solution space,rather than the point.The paper defines the Cell Evolutionary Algorithm,which implements such a view of the evolution mechanism.First,the optimal set in which the optimal solution may be obtained.Then this approach applies the embedded search method to get the optimal solution.We tested this approach on the atomic structure,and the results show that it can improve not only the efficiency but also the accuracy of the calculations as it relates to this specific problem.
基金The National Natural Science Foundation of China(No.60972001)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ_0163)the Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1212)
文摘In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method.
基金supported in part by the National Natural Science Foundation of China(61806051,61903078)Natural Science Foundation of Shanghai(20ZR1400400)+2 种基金Agricultural Project of the Shanghai Committee of Science and Technology(16391902800)the Fundamental Research Funds for the Central Universities(2232020D-48)the Project of the Humanities and Social Sciences on Young Fund of the Ministry of Education in China(Research on swarm intelligence collaborative robust optimization scheduling for high-dimensional dynamic decisionmaking system(20YJCZH052))。
文摘Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.
文摘A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good performance. The computation results show that its generality, precision, robustness, simplicity and performance are all satisfactory.
文摘Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金This work was supported by an EPSRC grant (No.EP/C520696/1).
文摘Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems. These efforts produced a deeper understanding of how EAs perform on different kinds of fitness landscapes and general mathematical tools that may be extended to the analysis of more complicated EAs on more realistic problems. In fact, in recent years, it has been possible to analyze the (1+1)-EA on combinatorial optimization problems with practical applications and more realistic population-based EAs on structured toy problems. This paper presents a survey of the results obtained in the last decade along these two research lines. The most common mathematical techniques are introduced, the basic ideas behind them are discussed and their elective applications are highlighted. Solved problems that were still open are enumerated as are those still awaiting for a solution. New questions and problems arisen in the meantime are also considered.
基金Supported by the National Natural Science Foundation of China(60133010,60073043,70071042)
文摘This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global search and local search in each sub-domain, the former enables individual to draw closer to each optima and keeps the diversity of individuals, while the latter selects local optimal solutions known as latent solutions in sub-domain. In the end, by selecting the global optimal solutions from latent solutions in each sub-domain, we can discover all the optimal solutions easily and quickly.
基金the National Natural Science Foundation of China(No.40839902)
文摘The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problems that easily appear during the model solution of regional water resource optimal allocation with multiple water sources,multiple users and multiple objectives like"curse of dimensionality"or sinking into local optimum,this paper proposes a particle swarm optimization(PSO)algorithm based on immune evolutionary algorithm(IEA).This algorithm introduces immunology principle into particle swarm algorithm.Its immune memorizing and self-adjusting mechanism is utilized to keep the particles in the fitness level at a certain concentration and guarantee the diversity of population.Also,the global search characteristics of IEA and the local search capacity of particle swarm algorithm have been fully utilized to overcome the dependence of PSO on initial swarm and the deficiency of vulnerability to local optimum.After applying this model to the allocation of water resources in Zhoukou,we obtain the scheme for optimization allocation of water resources in the planning level years,i.e.2015and 2025 under the guarantee rate of 50%.The calculation results indicate that the application of this algorithm to solve the issue of optimal allocation of regional water resources is reliable and reasonable.Thus it ofers a new idea for solving the issue of optimal allocation of water resources.
文摘Application of the multiobjective evolutionary algorithms to the aerodynamicoptimization design of a centrifugal impeller is presented. The aerodynamic performance of acentrifugal impeller is evaluated by using the three-dimensional Navier-Stokes solutions. Thetypical centrifugal impeller is redesigned for maximization of the pressure rise and blade load andminimization of the rotational total pressure loss at the given flow conditions. The Bezier curvesare used to parameterize the three-dimensional impeller blade shape. The present method obtains manyreasonable Pareto optimal designs that outperform the original centrifugal impeller. Detailedobservation of the certain Pareto optimal design demonstrates the feasibility of the presentmultiobjective optimization method tool for turbomachinery design.