In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error m...In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum ca- pacity and BER performance are consistent with those of the perfect Channel State Information (CSI) with only a performance degradation.展开更多
The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughp...The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughput caused by CQEE, the robust MCS selection method and adaptive MCS switching scheme are proposed. In addition, automatic repeat request (ARQ) scheme is used to improve the block error rate (BLER) performance. Simulation results show that the proposed methods decrease the throughput loss resulted from CQEE efficiently and BLER performance gets better with ARQ scheme.展开更多
Abstract In order to give a complex and accurate description about the sensitivity of efficient portfolios to changes in asset's expected returns, variances and covariances, the joint effect of estimation errors i...Abstract In order to give a complex and accurate description about the sensitivity of efficient portfolios to changes in asset's expected returns, variances and covariances, the joint effect of estimation errors in means, variances and covariances on the efficient portfolio's weights is investigated in this paper. It is proved that the efficient portfolio's composition is a Lipschitz continuous, differentiable mapping of these parameters under suitable conditions. The change rate of the efficient portfolio's weights with respect to variations about risk-return estimations is derived by estimating the Lipschitz constant. Our general quantitative results show that the efficient portfolio's weights are normally not so sensitive to estimation errors about means and variances. Moreover, we point out those extreme cases which might cause stability problems and how to avoid them in practice. Preliminary numerical results are also provided as an illustration to our theoretical results.展开更多
Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a sig...Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a significant influence on the accuracy of the method, making it mandatory to carry out sensitivity analysis. The sensitivity analysis helps to identify the level of impact the assumptions have on the method. However, sensitivity analysis via FEM can be very challenging. A priori error estimation, an integral part of FEM, is a basic mathematical tool for predicting the accuracy of numerical solutions. By understanding the relationship between the mesh size, the order of basis functions, and the resulting error, practitioners can effectively design and apply FEM to solve complex Partial Differential Equations (PDEs) with confidence in the reliability of their results. Thus, the coercive property and A priori error estimation based on the L1 formula on a mesh in time and the Mamadu-Njoseh basis functions in space are investigated for a linearly distributed time-order fractional telegraph equation with restricted initial conditions. For this purpose, we constructed a mathematical proof of the coercive property for the fully discretized scheme. Also, we stated and proved a cardinal theorem for a priori error estimation of the approximate solution for the fully discretized scheme. We noticed the role of the restricted initial conditions imposed on the solution in the analysis of a priori error estimation.展开更多
This paper gives the mathematical reason that the probit analysis method of toxicity measurement is reasonable, and proposes a new approach to compute the interval estimation of median lethal dose and 95% lethal dose....This paper gives the mathematical reason that the probit analysis method of toxicity measurement is reasonable, and proposes a new approach to compute the interval estimation of median lethal dose and 95% lethal dose. Based on the dose-response function of pesticides, this study firstly establishes a model of the data generating progress in toxicity test and proves that when the linear models of the logarithm of probability value and dose have been estimated, the weighted linear regression should be used, it is the reason why there is the heteroscedasticity of random disturbance term in the regression model, and the weight is right the reciprocal of the variance for random disturbance term. Secondly, based on the numerical simulation method, this paper gives a new approach for the interval estimation of median lethal dose and 95% lethal dose.展开更多
In this work, an efficient spectral method is proposed to solve the fourth-order eigenvalue problem in cylinder domain. Firstly, the key point of this method is to decompose the original model into a kind of decoupled...In this work, an efficient spectral method is proposed to solve the fourth-order eigenvalue problem in cylinder domain. Firstly, the key point of this method is to decompose the original model into a kind of decoupled two-dimensional eigenvalue problem by cylindrical coordinate transformation and Fourier series expansion, and deduce the crucial essential pole conditions. Secondly, we define a kind of weighted Sobolev spaces, and establish a suitable variational formula and its discrete form for each two-dimensional eigenvalue problem. Furthermore, we derive the equivalent operator formulas and obtain some prior error estimates of spectral theory of compact operators. More importantly, we further obtained error estimates for approximating eigenvalues and eigenfunctions by using two newly constructed projection operators. Finally,some numerical experiments are performed to validate our theoretical results and algorithm.展开更多
We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numeri...We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems.展开更多
This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator ...This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator is proposed for solving the convection-dominated non-symmetric eigenvalue problem with non-smooth eigenfunctions or multiple eigenvalues. Numerical examples confirm our theoretical analysis.展开更多
For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For ...For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.展开更多
In a quantum key distribution(QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation....In a quantum key distribution(QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation. We propose an efficient error estimation scheme for QKD, which is called parity comparison method(PCM). In the proposed method, the parity of a group of sifted keys is practically analysed to estimate the quantum bit error rate instead of using the traditional key sampling. From the simulation results, the proposed method evidently improves the accuracy and decreases revealed information in most realistic application situations.展开更多
Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the pred...Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS.展开更多
In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares...In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.展开更多
In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way A...In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way AF relaying mode with channel estimation error, the resultant instantaneous SNRs at end nodes is obtained. Then, by using a high SNR approximation, outage possibility is acquired and its simple closed-form expression is represented. Specially, for using the energy resource more efficiently, a low-complexity power allocation and transmission mode selection policy is proposed to enhance the energy efficiency of two-way AF relay system. Finally, relay priority region is identified in which cooperative diversity energy gain can be achieved. The computer simulations are presented to verify our analytical results, indicating that the proposed policy outperforms direct transmission by an energy gain of 3 dB at the relative channel estimation error less than 0.001. The results also show that the two-way AF relaying transmission loses the two-way AF relaying transmission loses its superiority to direct transmission in terms of energy efficiency when channel estimation error reaches 0.03.展开更多
An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error b...An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error bounds in three-dimensional fracture mechanics simulation which involves enrichments to solve the singularity in crack tip. This enriched goal-oriented error estimation gives a chance to evaluate this continuum- based shell extended finite element method simulation. With comparisons of reliability to the stress intensity factor calculation in stretching and bending, the accuracy of the continuum-based shell extended finite element method simulation is evaluated, and the reason of error is discussed.展开更多
A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing...A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing the limited sensor measurements, the entire structure response can be estimated based on the system equivalent reduction-expansion process(SEREP) method. In order to compare the capability of capturing the structural vibration response with other optimal sensor placement(OSP) methods, the effective independence(EI) method, modal kinetic energy(MKE) method and modal assurance criterion(MAC) method, were also investigated. A statistical criterion, root mean square error(RMSE), was employed to assess the magnitude of the estimation error between the real response and the estimated response. For investigating the effectiveness and accuracy of the above OSP methods, a 31-bar truss structure is introduced as a simulation example. The analysis results show that both the maximum and mean of the RMSE value obtained from the EEM method are smaller than those from other OSP methods, which indicates that the optimal sensor configuration obtained from the EEM method can provide a more accurate estimation of the entire structure response compared with the EI, MKE and MAC methods.展开更多
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A...In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously.展开更多
Based on the concept of constitutive relation error along with the residual of both origin and dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed in this paper. It lea...Based on the concept of constitutive relation error along with the residual of both origin and dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed in this paper. It leads to high quality local error bounds in the problem of fracture mechanics simulation with extended finite element method (XFEM), which involves enrichment to solve a stress singularity in the crack. Since goal-oriented error estimation with enriched degrees of freedom gives us a chance to evaluate the XFEM simulation, the stress intensity factor calculated by two kinds of XFEM programs developed by ourselves and by commercial code ABAQUS are compared in this work. By comparing the reliability of the stress intensity factor calculation, the accuracy of two programs in different cases is evaluated and the source of error is discussed. A 2-dimensional XFEM example is given to illustrate the computational procedure.展开更多
In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absenc...In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Pfiysical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed.展开更多
The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in ...The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).展开更多
基金by the National Natural Science Foundation of China (No.60496311).
文摘In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum ca- pacity and BER performance are consistent with those of the perfect Channel State Information (CSI) with only a performance degradation.
文摘The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughput caused by CQEE, the robust MCS selection method and adaptive MCS switching scheme are proposed. In addition, automatic repeat request (ARQ) scheme is used to improve the block error rate (BLER) performance. Simulation results show that the proposed methods decrease the throughput loss resulted from CQEE efficiently and BLER performance gets better with ARQ scheme.
基金Supported by the Natural Science Foundation of Shanxi Province,China (No.2001SL09)
文摘Abstract In order to give a complex and accurate description about the sensitivity of efficient portfolios to changes in asset's expected returns, variances and covariances, the joint effect of estimation errors in means, variances and covariances on the efficient portfolio's weights is investigated in this paper. It is proved that the efficient portfolio's composition is a Lipschitz continuous, differentiable mapping of these parameters under suitable conditions. The change rate of the efficient portfolio's weights with respect to variations about risk-return estimations is derived by estimating the Lipschitz constant. Our general quantitative results show that the efficient portfolio's weights are normally not so sensitive to estimation errors about means and variances. Moreover, we point out those extreme cases which might cause stability problems and how to avoid them in practice. Preliminary numerical results are also provided as an illustration to our theoretical results.
文摘Finite Element Method (FEM), when applied to solve problems, has faced some challenges over the years, such as time consumption and the complexity of assumptions. In particular, the making of assumptions has had a significant influence on the accuracy of the method, making it mandatory to carry out sensitivity analysis. The sensitivity analysis helps to identify the level of impact the assumptions have on the method. However, sensitivity analysis via FEM can be very challenging. A priori error estimation, an integral part of FEM, is a basic mathematical tool for predicting the accuracy of numerical solutions. By understanding the relationship between the mesh size, the order of basis functions, and the resulting error, practitioners can effectively design and apply FEM to solve complex Partial Differential Equations (PDEs) with confidence in the reliability of their results. Thus, the coercive property and A priori error estimation based on the L1 formula on a mesh in time and the Mamadu-Njoseh basis functions in space are investigated for a linearly distributed time-order fractional telegraph equation with restricted initial conditions. For this purpose, we constructed a mathematical proof of the coercive property for the fully discretized scheme. Also, we stated and proved a cardinal theorem for a priori error estimation of the approximate solution for the fully discretized scheme. We noticed the role of the restricted initial conditions imposed on the solution in the analysis of a priori error estimation.
文摘This paper gives the mathematical reason that the probit analysis method of toxicity measurement is reasonable, and proposes a new approach to compute the interval estimation of median lethal dose and 95% lethal dose. Based on the dose-response function of pesticides, this study firstly establishes a model of the data generating progress in toxicity test and proves that when the linear models of the logarithm of probability value and dose have been estimated, the weighted linear regression should be used, it is the reason why there is the heteroscedasticity of random disturbance term in the regression model, and the weight is right the reciprocal of the variance for random disturbance term. Secondly, based on the numerical simulation method, this paper gives a new approach for the interval estimation of median lethal dose and 95% lethal dose.
基金Supported by the National Natural Science Foundation of China(Grant No.12261017)the Scientific Research Foundation of Guizhou University of Finance and Economics(Grant No.2022ZCZX077)。
文摘In this work, an efficient spectral method is proposed to solve the fourth-order eigenvalue problem in cylinder domain. Firstly, the key point of this method is to decompose the original model into a kind of decoupled two-dimensional eigenvalue problem by cylindrical coordinate transformation and Fourier series expansion, and deduce the crucial essential pole conditions. Secondly, we define a kind of weighted Sobolev spaces, and establish a suitable variational formula and its discrete form for each two-dimensional eigenvalue problem. Furthermore, we derive the equivalent operator formulas and obtain some prior error estimates of spectral theory of compact operators. More importantly, we further obtained error estimates for approximating eigenvalues and eigenfunctions by using two newly constructed projection operators. Finally,some numerical experiments are performed to validate our theoretical results and algorithm.
文摘We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems.
基金Supported by the National Natural Science Foundation of China (Grant Nos.1236108412001130)。
文摘This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator is proposed for solving the convection-dominated non-symmetric eigenvalue problem with non-smooth eigenfunctions or multiple eigenvalues. Numerical examples confirm our theoretical analysis.
基金This work was supported by the National Natural Science Foundation(NNSF)of China under grant no.61673386,62073335the China Postdoctoral Science Foundation(2017M613201,2019T120944).
文摘For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00200 and 2011CB921200)the National Natural Science Foundation of China(Grant Nos.61101137,61201239,and 61205118)
文摘In a quantum key distribution(QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation. We propose an efficient error estimation scheme for QKD, which is called parity comparison method(PCM). In the proposed method, the parity of a group of sifted keys is practically analysed to estimate the quantum bit error rate instead of using the traditional key sampling. From the simulation results, the proposed method evidently improves the accuracy and decreases revealed information in most realistic application situations.
基金funded by the National Natural Science Foundation Science Fund for Youth (Grant No.41405095)the Key Projects in the National Science and Technology Pillar Program during the Twelfth Fiveyear Plan Period (Grant No.2012BAC22B02)the National Natural Science Foundation Science Fund for Creative Research Groups (Grant No.41221064)
文摘Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS.
基金the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX3-SYW-S02)the Youth Foundation of USTC
文摘In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.
基金Project(IRT0852) supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject(2012CB316100) supported by the National Basic Research Program of China+2 种基金Projects(61101144,61101145) supported by the National Natural Science Foundation of ChinaProject(B08038) supported by the "111" Project,ChinaProject(K50510010017) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to save energy consumption of two-way amplifier forward(AF) relaying with channel estimation error, an energy efficiency enhancement scheme is proposed in this work. Firstly, through the analysis of two-way AF relaying mode with channel estimation error, the resultant instantaneous SNRs at end nodes is obtained. Then, by using a high SNR approximation, outage possibility is acquired and its simple closed-form expression is represented. Specially, for using the energy resource more efficiently, a low-complexity power allocation and transmission mode selection policy is proposed to enhance the energy efficiency of two-way AF relay system. Finally, relay priority region is identified in which cooperative diversity energy gain can be achieved. The computer simulations are presented to verify our analytical results, indicating that the proposed policy outperforms direct transmission by an energy gain of 3 dB at the relative channel estimation error less than 0.001. The results also show that the two-way AF relaying transmission loses the two-way AF relaying transmission loses its superiority to direct transmission in terms of energy efficiency when channel estimation error reaches 0.03.
基金Project supported by the National Natural Science Foundation of China(No.10876100)
文摘An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error bounds in three-dimensional fracture mechanics simulation which involves enrichments to solve the singularity in crack tip. This enriched goal-oriented error estimation gives a chance to evaluate this continuum- based shell extended finite element method simulation. With comparisons of reliability to the stress intensity factor calculation in stretching and bending, the accuracy of the continuum-based shell extended finite element method simulation is evaluated, and the reason of error is discussed.
基金Project(2011CB013804)supported by the National Basic Research Program of China
文摘A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing the limited sensor measurements, the entire structure response can be estimated based on the system equivalent reduction-expansion process(SEREP) method. In order to compare the capability of capturing the structural vibration response with other optimal sensor placement(OSP) methods, the effective independence(EI) method, modal kinetic energy(MKE) method and modal assurance criterion(MAC) method, were also investigated. A statistical criterion, root mean square error(RMSE), was employed to assess the magnitude of the estimation error between the real response and the estimated response. For investigating the effectiveness and accuracy of the above OSP methods, a 31-bar truss structure is introduced as a simulation example. The analysis results show that both the maximum and mean of the RMSE value obtained from the EEM method are smaller than those from other OSP methods, which indicates that the optimal sensor configuration obtained from the EEM method can provide a more accurate estimation of the entire structure response compared with the EI, MKE and MAC methods.
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
基金supported by the National Natural Science Foundation of China(91538201)
文摘In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously.
基金Project supported by the National Natural Science Foundation of China(No.10876100)
文摘Based on the concept of constitutive relation error along with the residual of both origin and dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed in this paper. It leads to high quality local error bounds in the problem of fracture mechanics simulation with extended finite element method (XFEM), which involves enrichment to solve a stress singularity in the crack. Since goal-oriented error estimation with enriched degrees of freedom gives us a chance to evaluate the XFEM simulation, the stress intensity factor calculated by two kinds of XFEM programs developed by ourselves and by commercial code ABAQUS are compared in this work. By comparing the reliability of the stress intensity factor calculation, the accuracy of two programs in different cases is evaluated and the source of error is discussed. A 2-dimensional XFEM example is given to illustrate the computational procedure.
文摘In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Pfiysical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed.
基金supported by the Fundamental Research Funds for the Central Universities(ZYGX2009J016)
文摘The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).