How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of...How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of planar repetitive structures with nonlinear joints.First,at the local level,the nonlinear joint is modeled by the multi-harmonic describing function matrix.The element of the hybrid beam is obtained by the dynamic condensation of the beam-joint element.Second,at the global level,the displacement-equivalence method is used to model the multi-harmonic Euler continuum beam equivalent to the planar repetitive structure.Then,the pseudo-arc-length continuation method is applied to track the multi-harmonic trajectory of response.Afterwards,an experiment is conducted to validate the correctness of the modeling method,considering the effect of hanging rope and air damping.In the numerical studies,several simulation results indicate the similarity of response between a single-degree-of-freedom system with a single nonlinear joint and the system of the planar repetitive structure with a large number of nonlinear joints.Finally,the component of higher-order harmonics is shown to be important for predicting the resonance frequencies and amplitudes.展开更多
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents...Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.展开更多
This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly redu...This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly reduces the large number of nodes in the conventional switching model of the converter,thereby shrinking the size of its admittance matrix.Secondly,it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking.Mathematical derivation of the model is carried out using differential equations of the converter.The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EMTDC simulator against conventional detailed switching models and measurements from a single-phase scaleddown laboratory setup.This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.展开更多
Since the high penetration of distributed energy sources complicates the dynamics of electrical power systems,accurate dynamic models are indispensable for study on the transient behavior of the microgrid(MG).In some ...Since the high penetration of distributed energy sources complicates the dynamics of electrical power systems,accurate dynamic models are indispensable for study on the transient behavior of the microgrid(MG).In some practices,the lack of full detailed information results in failure of dif-ferential equation based dynamic modeling,which leads to a demand for a black-box MG modeling method.It is a critical challenge to maintain the effectiveness of the black-box model under a wide operating range and various fault conditions.In this paper,inspired by the mathematical equivalence between the recurrent neural network(RNN)and differential-algebraic equations(DAEs),a dynamic equivalent modeling method,using long short-term memory(LSTM),is presented to tackle this challenge.At first,the modeling equivalence and advantages of our basic idea are explained.Then,modeling procedures,including data preparation and design guidelines,are presented.Finally,the proposed method is applied to a multi-microgrid testing system for performance evaluation.The results,under various scenarios,reveal that the proposed modeling method has an adequate capability for representing the dynamic behaviors of a black-box MG under grid fault and operating point changing conditions.Index Terms-Deep learning,dynamic behavior,dynamic equivalent model,microgrid,neural network.展开更多
The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fews...The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fewstudies have addressed the issue of model equivalence under penetration loading.This study employs numerical simulation to validate an experiment with an ogival-nosed projectile penetrating a Q345 steel plate.Four equivalent stiffened plate methods are proposed based on the area,flexural modulus,moment of inertia,and thickness.The results indicate that thickness equivalence(DM4)is unsuitable for penetration-loaded stiffened plates,except under low-speed,nonpenetrating through impacts,and yields less accuracy than DM1/DM3.DM1,DM2,and DM3 each perform optimally with specific velocity ranges:DM1 at very low(critical)and high velocities,DM3 at low velocities,and DM2 at high speeds.Furthermore,in penetration scenarios,T-shaped stiffeners can be replacedwith rectangular ones,as both exhibit similar failure behaviors and deflection trends,simplifying the design while preserving key structural characteristics.These findings provide valuable insights into the design of protective ship structures.展开更多
With increasing the number of wind power generators,the consumption time of electromagnetic simulation of the wind farm explodes.To reduce the simulation time while meeting the accuracy requirement,a genetic clusterin...With increasing the number of wind power generators,the consumption time of electromagnetic simulation of the wind farm explodes.To reduce the simulation time while meeting the accuracy requirement,a genetic clustering-based equivalent model is proposed for the wind farm with numerous doubly fed induction generators.In the proposed model,active power together with the reactive power and the wind speed are selected to form the set of clustering indicators.A normalization technique is utilized to cope with the multiple orders of magnitude in these factors.An exponential fitness value is formulated as a function of the sorting number of the primary fitness value,and the fitness-based selection probability is constructed to overcome the property of premature and slow convergence of the genetic clustering algorithm.The sum of squares due to error is used to determine the optimal clustering number.In addition,a decoupled parameter equivalence method is adopted to obtain the equivalent parameters of the collection network.Simulation results and comparisons with various methods under different voltage scenarios show the feasibility and effectiveness of the proposed model.展开更多
One of the core works of analyzing Electrochemical Impedance Spectroscopy(EIS)data is to select an appropriate equivalent circuit model to quantify the parameters of the electrochemical reaction process.However,this p...One of the core works of analyzing Electrochemical Impedance Spectroscopy(EIS)data is to select an appropriate equivalent circuit model to quantify the parameters of the electrochemical reaction process.However,this process often relies on human experience and judgment,which will introduce subjectivity and error.In this paper,an intelligent approach is proposed for matching EIS data to their equivalent circuits based on the Random Forest algorithm.It can automatically select the most suitable equivalent circuit model based on the characteristics and patterns of EIS data.Addressing the typical scenario of metal corrosion,an atmospheric corrosion EIS dataset of low-carbon steel is constructed in this paper,which includes five different corrosion scenarios.This dataset was used to validate and evaluate the pro-posed method in this paper.The contributions of this paper can be summarized in three aspects:(1)This paper proposes a method for selecting equivalent circuit models for EIS data based on the Random Forest algorithm.(2)Using authentic EIS data collected from metal atmospheric corrosion,the paper es-tablishes a dataset encompassing five categories of metal corrosion scenarios.(3)The superiority of the proposed method is validated through the utilization of the established authentic EIS dataset.The ex-periment results demonstrate that,in terms of equivalent circuit matching,this method surpasses other machine learning algorithms in both precision and robustness.Furthermore,it shows strong applicability in the analysis of EIS data.展开更多
Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate ...Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate for actual situations.Although soil exhibits material nonlinearity under earthquake excitation,existing research on the TI medium is limited to soil linearity and neglects the nonlinear response of TI sites.A 2D equivalent linear model for a layered TI half-space subjected to seismic waves is derived in the transformed wave number domain using the exact dynamic stiffness matrix of the TI medium.This study introduces a method for determining the effective shear strain of TI sites under oblique wave incidence,and further describes a systematic study on the effects of TI parameters and soil nonlinearity on site responses.Numerical results indicate that seismic responses of the TI medium significantly differ from those of isotropic sites and that the responses are highly dependent on TI parameters,particularly in nonlinear cases,while also being sensitive to incident angle and excitation intensity.Moreover,the differences in peak acceleration and waveform for various TI materials may also be amplified due to the strong nonlinearity.The study provides valuable insights for improving the accuracy of seismic response analysis in engineering applications.展开更多
Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit mode...Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit model coupled with a global model.This study focuses on the effects of singlet metastable molecule O_(2)(b^(1)∑_(8)^(+)),highly excited Herzberg states O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-)),and the negative ion O_(2)^(-),which are usually neglected in simulation studies.Specifically,their impact on particle densities,electronegativity,electron temperature,voltage drop across the sheath,and absorbed power in the discharge is analyzed.The results indicate that O_(2)(b^(1)∑_(8)^(+))and O_(2)^(-)exhibit relatively high densities in argon-oxygen discharges.While O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-))play a critical role in O_(2)b1S+g production,especially at higher pressure.The inclusion of these particles reduces the electronegativity,electron temperature,and key species densities,especially the O^(-)and O^(*)densities.Moreover,the sheath voltage drop,as well as the inductance and resistance of the plasma bulk are enhanced,while the sheath dissipation power and total absorbed power decrease slightly.With the increasing pressure,the influence of these particles on the discharge properties becomes more significant.The study also explores the generation and loss of main neutral species and charged particles within the pressure range of 20 mTorr-100 mTorr(1 Torr=1.33322×10^(2)Pa),offering insights into essential and non-essential reactions for future low-pressure O_(2)and Ar/O_(2)CCP discharge modeling.展开更多
A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance i...A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.展开更多
Terahertz quantum cascade lasers(THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In...Terahertz quantum cascade lasers(THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model.Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results.展开更多
With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is pa...With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is particularly prominent.We present an InP HEMT extrinsic parasitic equivalent circuit,in which the conductance between the device electrodes and a new gate-drain mutual inductance term L_(mgd)are taken into account for the high-frequency magnetic field coupling between device electrodes.Based on the suggested parasitic equivalent circuit,through HFSS and advanced design system(ADS)co-simulation,the equivalent circuit parameters are directly extracted in the multi-step system.The HFSS simulation prediction,measurement data,and modeled frequency response are compared with each other to verify the feasibility of the extraction method and the accuracy of the equivalent circuit.The proposed model demonstrates the distributed and radio-frequency behavior of the device and solves the problem that the equivalent circuit parameters of the conventional InP HEMTs device are limited by the device model and inaccurate at high frequencies when being extracted.展开更多
Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts...Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts. An innovative displacement measurement system called videogrammetric system was developed and utilized for recording, measuring and analyzing the deformation and failure process of the models. A room and pillar mining and a longwall mining prototypes were studied in the modeling. Study found that weak floor of coal seam plays an important role in pillar stability and therefore the overburden movements.展开更多
All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid...All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs,which is challenging to investigate quantitatively by experimental approach.This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs.With the assistance of an equivalent circuit model and distribution of relaxation times,it is discovered that as the number of voids and the sharpness of cracks increase,the contact resistance Rcgrows and ultimately dominates the battery impedance.Through accurate fitting,inverse proportional relations between contact resistance Rcand(1-porosity)as well as crack angle was disclosed.This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs.展开更多
The development of magnesium batteries strongly relies on the use of a Mg metal anode and its benefits of high volumetric capacity,reduction potential,low cost and improved safety,however,to date,it still lacks suffic...The development of magnesium batteries strongly relies on the use of a Mg metal anode and its benefits of high volumetric capacity,reduction potential,low cost and improved safety,however,to date,it still lacks sufficient cycling stability and reversibility.Along with the electrolyte selection,the interfacial processes can be affected by the anode itself applying electrode engineering strategies.In this study,six different Mg anode approaches–namely bare Mg metal,Mg foil with an organic and inorganic artificial solid electrolyte interphase,Mg alloy,Mg pellet and a tape-casted Mg slurry–are selected to be investigated by means of electrochemical impedance spectroscopy in Mg|Mg and Mg|S cells.While a plating/stripping overpotential asymmetry was observed and assigned to the desolvation during Mg plating,the impedance spectra of stripping and plating hardly differ for all applied anodes.In contrast,the sulfur species significantly influence the impedance response by altering the surface layer composition.By systematic process assignment of the gained spectra in Mg|Mg and Mg|S cells,specific equivalent circuit models for different anodes and cell conditions are derived.Overall,the study aims to give valuable insights into the interfacial processes of Mg anodes to support their further development toward long-lasting Mg batteries.展开更多
Quantum well infrared photodetectors(QWIPs) based on intersubband transitions hold significant potential for high bandwidth operation. In this work, we establish a carrier transport optimization model incorporating el...Quantum well infrared photodetectors(QWIPs) based on intersubband transitions hold significant potential for high bandwidth operation. In this work, we establish a carrier transport optimization model incorporating electron injection at the emitter to investigate the carrier dynamics time and impedance spectroscopy in GaAs/AlGaAs QWIPs. Our findings provide novel evidence that the escape time of electrons is the key limiting factor for the 3-dB bandwidth of QWIPs. Moreover, to characterize the impact of carrier dynamics time and non-equilibrium space charge region on impedance, we developed an equivalent circuit model where depletion region resistance and capacitance are employed to describe non-equilibrium space charge region. Using this model, we discovered that under illumination, both net charge accumulation caused by variations in carrier dynamics times within quantum wells and changes in width of non-equilibrium space charge region exert different dominant influences on depletion region capacitance at various doping concentrations.展开更多
To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is pla...To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is placed on the critical components of material and heat balance.Through a thorough analysis of the interactions between various components and energy consumptions,six pivotal factors have been identified—raw material composition,steel type,steel temperature,slag temperature,recycling practices,and operational parameters.Utilizing a framework based on an equivalent energy consumption model,an integrated intelligent diagnostic model has been developed that encapsulates these factors,providing a comprehensive assessment tool for converter energy consumption.Employing the K-means clustering algorithm,historical operational data from the converter have been meticulously analyzed to determine baseline values for essential variables such as energy consumption and recovery rates.Building upon this data-driven foundation,an innovative online system for the intelligent diagnosis of converter energy consumption has been crafted and implemented,enhancing the precision and efficiency of energy management.Upon implementation with energy consumption data at a steel plant in 2023,the diagnostic analysis performed by the system exposed significant variations in energy usage across different converter units.The analysis revealed that the most significant factor influencing the variation in energy consumption for both furnaces was the steel grade,with contributions of−0.550 and 0.379.展开更多
Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous co...Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.展开更多
With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in ...With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in this paper.The ampere-hour(Ah)integration method based on external characteristics is analyzed,and the open-circuit voltage(OCV)method is studied.The two methods are combined to estimate SOC.Considering the accuracy and complexity of the model,the second-order RC equivalent circuit model of lithium battery is selected.Pulse discharge and exponential fitting of lithium battery are used to obtain corresponding parameters.The simulation is carried out by using fixed resistance capacitance and variable resistance capacitor respectively.The accuracy of variable resistance and capacitance model is 2.9%,which verifies the validity of the proposed model.展开更多
Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment....Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment.Therefore,a 5-DOF(degrees of freedom)parallel kinematic machine(PKM)with redundant constraints is proposed.Based on the kinematics analysis of the parallel mechanism using intermediate variables,the kinematics problems of the PKM are solved through equivalent kinematics model.The structural stiffness matrix method is adopted to model the stiffness of the parallel mechanism of the PKM,where the stiffness of each joint and branch component is obtained by stiffness formula and finite element analysis.And the stiffness model of the parallel mechanism is improved by correction coefficient matrix,each element of which is constructed as a polynomial function of three independent end variables of the parallel mechanism.The terminal stiffness matrices obtained by simulation result are used to determine the coefficients of polynomial function by least square fitting to describe the correction coefficient over the workspace of the parallel mechanism quantitatively.The experiment results prove that the modification method can greatly improve the stiffness model of the parallel mechanism.To enhance the machining accuracy of the PKM,the proposed kinematics model and the improved stiffness model are utilized to optimize the working stiffness of parallel machine by searching the best relative position of parallel machine and workpiece.A plate workpiece taken as example is examined in the case study section,which demonstrates the effectiveness of optimization method.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11827801,12172181 and 11732006).
文摘How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of planar repetitive structures with nonlinear joints.First,at the local level,the nonlinear joint is modeled by the multi-harmonic describing function matrix.The element of the hybrid beam is obtained by the dynamic condensation of the beam-joint element.Second,at the global level,the displacement-equivalence method is used to model the multi-harmonic Euler continuum beam equivalent to the planar repetitive structure.Then,the pseudo-arc-length continuation method is applied to track the multi-harmonic trajectory of response.Afterwards,an experiment is conducted to validate the correctness of the modeling method,considering the effect of hanging rope and air damping.In the numerical studies,several simulation results indicate the similarity of response between a single-degree-of-freedom system with a single nonlinear joint and the system of the planar repetitive structure with a large number of nonlinear joints.Finally,the component of higher-order harmonics is shown to be important for predicting the resonance frequencies and amplitudes.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under 5214JS220010.
文摘Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.
基金supported in part by the Natural Sciences and Engineering Research Council(NSERC)of Canada,MITACS Accelerate,Manitoba Hydro,and by the University of Manitoba。
文摘This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly reduces the large number of nodes in the conventional switching model of the converter,thereby shrinking the size of its admittance matrix.Secondly,it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking.Mathematical derivation of the model is carried out using differential equations of the converter.The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EMTDC simulator against conventional detailed switching models and measurements from a single-phase scaleddown laboratory setup.This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.
基金supported in part by the Science Search Foundation of Liaoning Educational Department(No.LQGD2020002).
文摘Since the high penetration of distributed energy sources complicates the dynamics of electrical power systems,accurate dynamic models are indispensable for study on the transient behavior of the microgrid(MG).In some practices,the lack of full detailed information results in failure of dif-ferential equation based dynamic modeling,which leads to a demand for a black-box MG modeling method.It is a critical challenge to maintain the effectiveness of the black-box model under a wide operating range and various fault conditions.In this paper,inspired by the mathematical equivalence between the recurrent neural network(RNN)and differential-algebraic equations(DAEs),a dynamic equivalent modeling method,using long short-term memory(LSTM),is presented to tackle this challenge.At first,the modeling equivalence and advantages of our basic idea are explained.Then,modeling procedures,including data preparation and design guidelines,are presented.Finally,the proposed method is applied to a multi-microgrid testing system for performance evaluation.The results,under various scenarios,reveal that the proposed modeling method has an adequate capability for representing the dynamic behaviors of a black-box MG under grid fault and operating point changing conditions.Index Terms-Deep learning,dynamic behavior,dynamic equivalent model,microgrid,neural network.
基金supported by Natural Science Foundation of Fujian Province(2022I0019)Scientific Research Foundation for Jimei University(ZQ2024041,ZQ2024042).
文摘The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fewstudies have addressed the issue of model equivalence under penetration loading.This study employs numerical simulation to validate an experiment with an ogival-nosed projectile penetrating a Q345 steel plate.Four equivalent stiffened plate methods are proposed based on the area,flexural modulus,moment of inertia,and thickness.The results indicate that thickness equivalence(DM4)is unsuitable for penetration-loaded stiffened plates,except under low-speed,nonpenetrating through impacts,and yields less accuracy than DM1/DM3.DM1,DM2,and DM3 each perform optimally with specific velocity ranges:DM1 at very low(critical)and high velocities,DM3 at low velocities,and DM2 at high speeds.Furthermore,in penetration scenarios,T-shaped stiffeners can be replacedwith rectangular ones,as both exhibit similar failure behaviors and deflection trends,simplifying the design while preserving key structural characteristics.These findings provide valuable insights into the design of protective ship structures.
基金the National Key R&D Program of China(No.2019YFE0114700)the Key R&D Program in Hunan Province of China(No.2021GK2020)+1 种基金the Natural Science Foundation of Hunan Province of China(No.2021JJ30079)the Project of Philosophy and Social Science Research in Yiyang City(No.2022YS191)。
文摘With increasing the number of wind power generators,the consumption time of electromagnetic simulation of the wind farm explodes.To reduce the simulation time while meeting the accuracy requirement,a genetic clustering-based equivalent model is proposed for the wind farm with numerous doubly fed induction generators.In the proposed model,active power together with the reactive power and the wind speed are selected to form the set of clustering indicators.A normalization technique is utilized to cope with the multiple orders of magnitude in these factors.An exponential fitness value is formulated as a function of the sorting number of the primary fitness value,and the fitness-based selection probability is constructed to overcome the property of premature and slow convergence of the genetic clustering algorithm.The sum of squares due to error is used to determine the optimal clustering number.In addition,a decoupled parameter equivalence method is adopted to obtain the equivalent parameters of the collection network.Simulation results and comparisons with various methods under different voltage scenarios show the feasibility and effectiveness of the proposed model.
基金support of the project from the National Key R&D Program of China,Research and Application of Sensing System for Cross-regional Complex Oil&Gas Pipeline Network Safe and Efficiency Operational Status Monitoring(Grant No.2022YFB3207603).
文摘One of the core works of analyzing Electrochemical Impedance Spectroscopy(EIS)data is to select an appropriate equivalent circuit model to quantify the parameters of the electrochemical reaction process.However,this process often relies on human experience and judgment,which will introduce subjectivity and error.In this paper,an intelligent approach is proposed for matching EIS data to their equivalent circuits based on the Random Forest algorithm.It can automatically select the most suitable equivalent circuit model based on the characteristics and patterns of EIS data.Addressing the typical scenario of metal corrosion,an atmospheric corrosion EIS dataset of low-carbon steel is constructed in this paper,which includes five different corrosion scenarios.This dataset was used to validate and evaluate the pro-posed method in this paper.The contributions of this paper can be summarized in three aspects:(1)This paper proposes a method for selecting equivalent circuit models for EIS data based on the Random Forest algorithm.(2)Using authentic EIS data collected from metal atmospheric corrosion,the paper es-tablishes a dataset encompassing five categories of metal corrosion scenarios.(3)The superiority of the proposed method is validated through the utilization of the established authentic EIS dataset.The ex-periment results demonstrate that,in terms of equivalent circuit matching,this method surpasses other machine learning algorithms in both precision and robustness.Furthermore,it shows strong applicability in the analysis of EIS data.
基金National Natural Science Foundation of China under Grant No.U2139208。
文摘Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate for actual situations.Although soil exhibits material nonlinearity under earthquake excitation,existing research on the TI medium is limited to soil linearity and neglects the nonlinear response of TI sites.A 2D equivalent linear model for a layered TI half-space subjected to seismic waves is derived in the transformed wave number domain using the exact dynamic stiffness matrix of the TI medium.This study introduces a method for determining the effective shear strain of TI sites under oblique wave incidence,and further describes a systematic study on the effects of TI parameters and soil nonlinearity on site responses.Numerical results indicate that seismic responses of the TI medium significantly differ from those of isotropic sites and that the responses are highly dependent on TI parameters,particularly in nonlinear cases,while also being sensitive to incident angle and excitation intensity.Moreover,the differences in peak acceleration and waveform for various TI materials may also be amplified due to the strong nonlinearity.The study provides valuable insights for improving the accuracy of seismic response analysis in engineering applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.12020101005,12475202,12347131,and 12405289).
文摘Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit model coupled with a global model.This study focuses on the effects of singlet metastable molecule O_(2)(b^(1)∑_(8)^(+)),highly excited Herzberg states O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-)),and the negative ion O_(2)^(-),which are usually neglected in simulation studies.Specifically,their impact on particle densities,electronegativity,electron temperature,voltage drop across the sheath,and absorbed power in the discharge is analyzed.The results indicate that O_(2)(b^(1)∑_(8)^(+))and O_(2)^(-)exhibit relatively high densities in argon-oxygen discharges.While O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-))play a critical role in O_(2)b1S+g production,especially at higher pressure.The inclusion of these particles reduces the electronegativity,electron temperature,and key species densities,especially the O^(-)and O^(*)densities.Moreover,the sheath voltage drop,as well as the inductance and resistance of the plasma bulk are enhanced,while the sheath dissipation power and total absorbed power decrease slightly.With the increasing pressure,the influence of these particles on the discharge properties becomes more significant.The study also explores the generation and loss of main neutral species and charged particles within the pressure range of 20 mTorr-100 mTorr(1 Torr=1.33322×10^(2)Pa),offering insights into essential and non-essential reactions for future low-pressure O_(2)and Ar/O_(2)CCP discharge modeling.
文摘A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339803)the National High Technology Research and Development Program of China(Grant No.2011AA010205)+5 种基金the National Natural Science Foundation of China(Grant Nos.61131006,61321492,and 61404149)the Major National Development Project of Scientific Instrument and Equipment,China(Grant No.2011YQ150021)the National Science and Technology Major Project,China(Grant No.2011ZX02707)the Major Project,China(Grant No.YYYJ-1123-1)the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciencesthe Shanghai Municipal Commission of Science and Technology,China(Grant Nos.14530711300)
文摘Terahertz quantum cascade lasers(THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model.Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61434006 and 61704189)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences。
文摘With the widespread utilization of indium-phosphide-based high-electron-mobility transistors(InP HEMTs)in the millimeter-wave(mmW)band,the distributed and high-frequency parasitic coupling behavior of the device is particularly prominent.We present an InP HEMT extrinsic parasitic equivalent circuit,in which the conductance between the device electrodes and a new gate-drain mutual inductance term L_(mgd)are taken into account for the high-frequency magnetic field coupling between device electrodes.Based on the suggested parasitic equivalent circuit,through HFSS and advanced design system(ADS)co-simulation,the equivalent circuit parameters are directly extracted in the multi-step system.The HFSS simulation prediction,measurement data,and modeled frequency response are compared with each other to verify the feasibility of the extraction method and the accuracy of the equivalent circuit.The proposed model demonstrates the distributed and radio-frequency behavior of the device and solves the problem that the equivalent circuit parameters of the conventional InP HEMTs device are limited by the device model and inaccurate at high frequencies when being extracted.
文摘Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts. An innovative displacement measurement system called videogrammetric system was developed and utilized for recording, measuring and analyzing the deformation and failure process of the models. A room and pillar mining and a longwall mining prototypes were studied in the modeling. Study found that weak floor of coal seam plays an important role in pillar stability and therefore the overburden movements.
基金supported by the Beijing Natural Science Foundation(Z200011,L233004)the National Key Research and Development Program(2021YFB2500300)+3 种基金the National Natural Science Foundation of China(52394170,52394171,22109011,22393900,and 22108151)the Tsinghua-Jiangyin Innovation Special Fund(TJISF)(2022JYTH0101)the S&T Program of Hebei(22344402D)the Tsinghua University Initiative Scientific Research Program.
文摘All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs,which is challenging to investigate quantitatively by experimental approach.This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs.With the assistance of an equivalent circuit model and distribution of relaxation times,it is discovered that as the number of voids and the sharpness of cracks increase,the contact resistance Rcgrows and ultimately dominates the battery impedance.Through accurate fitting,inverse proportional relations between contact resistance Rcand(1-porosity)as well as crack angle was disclosed.This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs.
基金financially supported by the Federal Ministry for Education and Research of Germany(Bundesminis-terium für Bildung und Forschung,BMBF)and the European Commission within the projects“MagSiMal”(03XP0208)“E-MAGIC”(824066),respectively。
文摘The development of magnesium batteries strongly relies on the use of a Mg metal anode and its benefits of high volumetric capacity,reduction potential,low cost and improved safety,however,to date,it still lacks sufficient cycling stability and reversibility.Along with the electrolyte selection,the interfacial processes can be affected by the anode itself applying electrode engineering strategies.In this study,six different Mg anode approaches–namely bare Mg metal,Mg foil with an organic and inorganic artificial solid electrolyte interphase,Mg alloy,Mg pellet and a tape-casted Mg slurry–are selected to be investigated by means of electrochemical impedance spectroscopy in Mg|Mg and Mg|S cells.While a plating/stripping overpotential asymmetry was observed and assigned to the desolvation during Mg plating,the impedance spectra of stripping and plating hardly differ for all applied anodes.In contrast,the sulfur species significantly influence the impedance response by altering the surface layer composition.By systematic process assignment of the gained spectra in Mg|Mg and Mg|S cells,specific equivalent circuit models for different anodes and cell conditions are derived.Overall,the study aims to give valuable insights into the interfacial processes of Mg anodes to support their further development toward long-lasting Mg batteries.
基金financially supported by the National Natural Science Foundation of China (Grant No. 61991442)。
文摘Quantum well infrared photodetectors(QWIPs) based on intersubband transitions hold significant potential for high bandwidth operation. In this work, we establish a carrier transport optimization model incorporating electron injection at the emitter to investigate the carrier dynamics time and impedance spectroscopy in GaAs/AlGaAs QWIPs. Our findings provide novel evidence that the escape time of electrons is the key limiting factor for the 3-dB bandwidth of QWIPs. Moreover, to characterize the impact of carrier dynamics time and non-equilibrium space charge region on impedance, we developed an equivalent circuit model where depletion region resistance and capacitance are employed to describe non-equilibrium space charge region. Using this model, we discovered that under illumination, both net charge accumulation caused by variations in carrier dynamics times within quantum wells and changes in width of non-equilibrium space charge region exert different dominant influences on depletion region capacitance at various doping concentrations.
基金financial support from the National Key R&D Program of China(Grant No.2020YFB1711100).
文摘To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is placed on the critical components of material and heat balance.Through a thorough analysis of the interactions between various components and energy consumptions,six pivotal factors have been identified—raw material composition,steel type,steel temperature,slag temperature,recycling practices,and operational parameters.Utilizing a framework based on an equivalent energy consumption model,an integrated intelligent diagnostic model has been developed that encapsulates these factors,providing a comprehensive assessment tool for converter energy consumption.Employing the K-means clustering algorithm,historical operational data from the converter have been meticulously analyzed to determine baseline values for essential variables such as energy consumption and recovery rates.Building upon this data-driven foundation,an innovative online system for the intelligent diagnosis of converter energy consumption has been crafted and implemented,enhancing the precision and efficiency of energy management.Upon implementation with energy consumption data at a steel plant in 2023,the diagnostic analysis performed by the system exposed significant variations in energy usage across different converter units.The analysis revealed that the most significant factor influencing the variation in energy consumption for both furnaces was the steel grade,with contributions of−0.550 and 0.379.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100201120028)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ7026)the Fundamental Research Funds for the Central Universities of China (Grant No. 2012jdgz09)the State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No. EIPE12303)
文摘Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.
基金Project(51507073)supported by the National Natural Science Foundation of China。
文摘With the rise of the electric vehicle industry,as the power source of electric vehicles,lithium battery has become a research hotspot.The state of charge(SOC)estimation and modelling of lithium battery are studied in this paper.The ampere-hour(Ah)integration method based on external characteristics is analyzed,and the open-circuit voltage(OCV)method is studied.The two methods are combined to estimate SOC.Considering the accuracy and complexity of the model,the second-order RC equivalent circuit model of lithium battery is selected.Pulse discharge and exponential fitting of lithium battery are used to obtain corresponding parameters.The simulation is carried out by using fixed resistance capacitance and variable resistance capacitor respectively.The accuracy of variable resistance and capacitance model is 2.9%,which verifies the validity of the proposed model.
文摘Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment.Therefore,a 5-DOF(degrees of freedom)parallel kinematic machine(PKM)with redundant constraints is proposed.Based on the kinematics analysis of the parallel mechanism using intermediate variables,the kinematics problems of the PKM are solved through equivalent kinematics model.The structural stiffness matrix method is adopted to model the stiffness of the parallel mechanism of the PKM,where the stiffness of each joint and branch component is obtained by stiffness formula and finite element analysis.And the stiffness model of the parallel mechanism is improved by correction coefficient matrix,each element of which is constructed as a polynomial function of three independent end variables of the parallel mechanism.The terminal stiffness matrices obtained by simulation result are used to determine the coefficients of polynomial function by least square fitting to describe the correction coefficient over the workspace of the parallel mechanism quantitatively.The experiment results prove that the modification method can greatly improve the stiffness model of the parallel mechanism.To enhance the machining accuracy of the PKM,the proposed kinematics model and the improved stiffness model are utilized to optimize the working stiffness of parallel machine by searching the best relative position of parallel machine and workpiece.A plate workpiece taken as example is examined in the case study section,which demonstrates the effectiveness of optimization method.