Lateral flow immunoassay(LFIA),a rapid detection technique noted for simplicity and economy,has showcased indispensable applicability in diverse domains such as disease screening,food safety,and environmental monitori...Lateral flow immunoassay(LFIA),a rapid detection technique noted for simplicity and economy,has showcased indispensable applicability in diverse domains such as disease screening,food safety,and environmental monitoring.Nevertheless,challenges still exist in detecting ultra-low concentration analytes due to the inherent sensitivity limitations of LFIA.Recently,significant advances have been achieved by integrating enzyme activity probes and transforming LFIA into a highly sensitive tool for rapidly detecting trace analyte concentrations.Specifically,modifying natural enzymes or engineered nanozymes allows them to function as immune probes,directly catalyzing the production of signal molecules or indirectly initiating enzyme activity.Therefore,the signal intensity and detection sensitivity of LFIA are markedly elevated.The present review undertakes a comprehensive examination of pertinent research literature,offering a systematic analysis of recently proposed enzyme-based signal amplification strategies.By way of comparative assessment,the merits and demerits of current approaches are delineated,along with the identification of research avenues that still need to be explored.It is anticipated that this critical overview will garner considerable attention within the biomedical and materials science communities,providing valuable direction and insight toward the advancement of high-performance LFIA technologies.展开更多
Stevioside, extracted from the leaves of Stevia rebaudiana Bertoni, is a natural, high intensity, lowcaloric sweetener with wide therapeutic activities. Conventional stevioside extraction methodologies involve the use...Stevioside, extracted from the leaves of Stevia rebaudiana Bertoni, is a natural, high intensity, lowcaloric sweetener with wide therapeutic activities. Conventional stevioside extraction methodologies involve the use of non-green solvents, supercritical fluids, microwaves, etc., however, all these processes are expensive, time-consuming and eco-unfriendly. Therefore an alternative process is desired for the isolation of stevioside. In this study, a novel enzyme-mediated extraction (EME) method has been developed. The dry stevia leaves were pre-treated with hydrolytic enzymes aided by transition metal salts (FeCl3). This was followed by pressurized hot water extraction (PHWE) to release stevioside. The crude extract was purified and clarified through multi-stage membrane filtration. The results confirm that metal salt-assisted cellulase pre-treatment enhanced the yield of stevioside to 72%, with 98% purity, which was higher in comparison to existing methods. Thus, the methodology developed establishes a simple, “green”, enzyme-mediated process for the efficient isolation of stevioside under economical and eco-friendly conditions.展开更多
基金Financial supports from the National Natural Science Foundation of China(NSFC,Nos.52272144 and 22205048)Heilongjiang Provincial Natural Science Foundation of China(No.JQ2022E001)+3 种基金China Postdoctoral Science Foundation(Nos.2022M710931 and 2023T160154)Heilongjiang Postdoctoral Science Foundation(No.LBH-Z22010)Natural Science Foundation of Shandong Province(No.ZR2020ZD42)the Fundamental Research funds for the Central Universities are greatly acknowledged.
文摘Lateral flow immunoassay(LFIA),a rapid detection technique noted for simplicity and economy,has showcased indispensable applicability in diverse domains such as disease screening,food safety,and environmental monitoring.Nevertheless,challenges still exist in detecting ultra-low concentration analytes due to the inherent sensitivity limitations of LFIA.Recently,significant advances have been achieved by integrating enzyme activity probes and transforming LFIA into a highly sensitive tool for rapidly detecting trace analyte concentrations.Specifically,modifying natural enzymes or engineered nanozymes allows them to function as immune probes,directly catalyzing the production of signal molecules or indirectly initiating enzyme activity.Therefore,the signal intensity and detection sensitivity of LFIA are markedly elevated.The present review undertakes a comprehensive examination of pertinent research literature,offering a systematic analysis of recently proposed enzyme-based signal amplification strategies.By way of comparative assessment,the merits and demerits of current approaches are delineated,along with the identification of research avenues that still need to be explored.It is anticipated that this critical overview will garner considerable attention within the biomedical and materials science communities,providing valuable direction and insight toward the advancement of high-performance LFIA technologies.
文摘Stevioside, extracted from the leaves of Stevia rebaudiana Bertoni, is a natural, high intensity, lowcaloric sweetener with wide therapeutic activities. Conventional stevioside extraction methodologies involve the use of non-green solvents, supercritical fluids, microwaves, etc., however, all these processes are expensive, time-consuming and eco-unfriendly. Therefore an alternative process is desired for the isolation of stevioside. In this study, a novel enzyme-mediated extraction (EME) method has been developed. The dry stevia leaves were pre-treated with hydrolytic enzymes aided by transition metal salts (FeCl3). This was followed by pressurized hot water extraction (PHWE) to release stevioside. The crude extract was purified and clarified through multi-stage membrane filtration. The results confirm that metal salt-assisted cellulase pre-treatment enhanced the yield of stevioside to 72%, with 98% purity, which was higher in comparison to existing methods. Thus, the methodology developed establishes a simple, “green”, enzyme-mediated process for the efficient isolation of stevioside under economical and eco-friendly conditions.