Ferroptosis has exhibited great potential in therapies and intracellular reducing agents of sulfur species(RSSs) in the thiol-dependent redox systems are crucial in ferroptosis.This makes the simultaneous detection of...Ferroptosis has exhibited great potential in therapies and intracellular reducing agents of sulfur species(RSSs) in the thiol-dependent redox systems are crucial in ferroptosis.This makes the simultaneous detection of multiple RSSs significant for evaluating ferroptosis therapy.However,the traditional techniques,including fluorescent(FL) imaging and electrospray ionization-based mass spectrometry(MS) detection,cannot achieve the discrimination of different RSSs.Herein,simultaneous MS detection of multiple RSSs,including cysteine(Cys),homocysteine(Hcy),glutathione(GSH) and hydrogen sulfide(H_(2)S),was obtained upon enhancing ionization efficiency by a fluorescent probe(NBD-O-1).Based on the interaction between NBD-O-1 and RSSs,the complex of RSSs with a fragment of NBD-O-1 can be generated,which can be easily ionized for MS detection in the negative mode.Therefore,the intracellular RSSs can be well detected upon the incubation of He La cells with the probe of NBD-O-1,exhibiting the total RSS levels by the FL imaging and further providing expression of each RSS by enhanced MS detection.Furthermore,the RSSs during ferroptosis in He La cells have been evaluated using the present strategy,demonstrating the potential for ferroptosis examinations.This work has made an unconventional application of a fluorescent probe to enhance the detection of multiple RSSs by MS,providing significant molecular information for addressing the ferroptosis mechanism.展开更多
基金supported by the National Key Research and Development Program of China (No.2024YFA1509600)National Natural Science Foundation of China (Nos.22474010 and 22274012)the Fundamental Research Funds for the Central Universities (No.2233300007)。
文摘Ferroptosis has exhibited great potential in therapies and intracellular reducing agents of sulfur species(RSSs) in the thiol-dependent redox systems are crucial in ferroptosis.This makes the simultaneous detection of multiple RSSs significant for evaluating ferroptosis therapy.However,the traditional techniques,including fluorescent(FL) imaging and electrospray ionization-based mass spectrometry(MS) detection,cannot achieve the discrimination of different RSSs.Herein,simultaneous MS detection of multiple RSSs,including cysteine(Cys),homocysteine(Hcy),glutathione(GSH) and hydrogen sulfide(H_(2)S),was obtained upon enhancing ionization efficiency by a fluorescent probe(NBD-O-1).Based on the interaction between NBD-O-1 and RSSs,the complex of RSSs with a fragment of NBD-O-1 can be generated,which can be easily ionized for MS detection in the negative mode.Therefore,the intracellular RSSs can be well detected upon the incubation of He La cells with the probe of NBD-O-1,exhibiting the total RSS levels by the FL imaging and further providing expression of each RSS by enhanced MS detection.Furthermore,the RSSs during ferroptosis in He La cells have been evaluated using the present strategy,demonstrating the potential for ferroptosis examinations.This work has made an unconventional application of a fluorescent probe to enhance the detection of multiple RSSs by MS,providing significant molecular information for addressing the ferroptosis mechanism.