Objective:To systematically explore the effectiveness of combining Enhanced Recovery After Surgery(ERAS)nursing and empathy intervention for postoperative patients with glioma.Methods:A total of 54 patients with gliom...Objective:To systematically explore the effectiveness of combining Enhanced Recovery After Surgery(ERAS)nursing and empathy intervention for postoperative patients with glioma.Methods:A total of 54 patients with glioma undergoing surgical treatment were selected for the study.The patients were admitted to the hospital between April 2023 and April 2025.The patients were divided into an observation group(n=27)and a control group(n=27)based on a random number table method.Relevant intervention indicators were compared between the two groups.Results:Compared with the control group,the postoperative recovery indicators in the observation group showed significant differences(P<0.05).After intervention,the scores of stress psychological indicators,FMA,NHISS,and ADL in the observation group were all better than those in the control group(P<0.05).The incidence of complications in the observation group was significantly lower than that in the control group(P<0.05).Conclusion:The combined application of empathy intervention and ERAS nursing effectively regulates the postoperative stress psychological state of patients with glioma,significantly improves their limb and neurological functions as well as daily living abilities,accelerates postoperative recovery,and reduces complications.This approach is feasible for wider implementation.展开更多
AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited...AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets.展开更多
BACKGROUND Intravenous infusion is a common method of drug administration in clinical practice.Errors in any aspect of the infusion process,from the verification of medical orders,preparation of the drug solution,to i...BACKGROUND Intravenous infusion is a common method of drug administration in clinical practice.Errors in any aspect of the infusion process,from the verification of medical orders,preparation of the drug solution,to infusion by nursing staff,may cause adverse infusion events.AIM To analyzed the value of improving nursing measures and enhancing nursing management to reduce the occurrence of adverse events in pediatric infusion.METHODS The clinical data of 130 children who received an infusion in the pediatric department of our hospital from May 2020 to May 2021 were analyzed and divided into two groups according to the differences in nursing measures and nursing management:65 patients in the control group received conventional nursing and nursing management interventions,while 65 patients in the observation group received improved nursing measure interventions and enhanced nursing management.The occurrence of adverse events,compliance of children,satisfaction of children’s families,and complaints regarding the transfusion treatment were recorded in both groups.RESULTS The incidence of fluid extravasation and infusion set dislodgement in the observation group were 3.08%and 1.54%,respectively,which were significantly lower than 12.31%and 13.85%in the control group(P<0.05),while repeated punctures and medication addition errors in the observation group were 3.08%and 0.00%,respectively,which were lower than 9.23%and 3.08%in the control group,but there was no significant difference(P>0.05).The compliance rate of children in the observation group was 98.46%(64/65),which was significantly higher than 87.69%(57/65)in the control group,and the satisfaction rate of children’s families was 96.92%(63/65),which was significantly higher than 86.15%(56/65)in the control group(P<0.05).The observation group did not receive any complaints from the child’s family,whereas the control group received four complaints,two of which were due to the crying of the child caused by repeated punctures,one due to the poor attitude of the nurse,and one due to medication addition errors,with a cumulative complaint rate of 6.15%.The cumulative complaint rate of the observation group was significantly lower than that of the control group(P<0.05).CONCLUSION Improving nursing measures and enhancing nursing management can reduce the incidence of fluid extravasation and infusion set dislodgement in pediatric patients,improve children’s compliance and satisfaction of their families,and reduce family complaints.展开更多
Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th...Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,t...To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy.展开更多
Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxyge...Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.展开更多
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The...To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.展开更多
Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced in...Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced into boron particles,investigating the impact of PDA content on the energetic behavior of boron.The results indicated that the PDA coating formed a fishing net structure on the surface of boron particles.The heat release results showed that the combustion calorific value of B@PDA was higher than that of the raw boron.Specifically,the actual combustion heat of boron powder in B@10%PDA increased by 38.08%.Meanwhile,the DSC peak temperature decreased by 100.65℃under similar oxidation rate compared to raw boron.Simultaneously,the B@PDA@AP and B@AP composites were prepared,and their combustion properties were evaluated.It was demonstrated that B@10%PDA@AP exhibited superior performance in terms of peak pressure and burning time,respectively.The peak pressure is 12.43 kPa more than B@AP and burning time is 2.22 times higher than B@AP.Therefore,the coating of PDA effectively inhibits the oxidization of boron during storage and enhances the energetic behavior of boron and corresponding composites.展开更多
This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curi...This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curing duration on the unconfined compressive strength,initial resistivity and pressure sensitivity of the improved soil was systematically analysed.The results showed that the unconfined compressive strength varied non⁃monotonically with increasing CFP dosage,reaching a peak at a dosage of 1.6%.Furthermore,the initial resistivity showed slight variations under different moisture conditions but eventually converged towards the conductive percolation threshold at a dosage of 2.4%.It is worth noting that CFP reinforced lime⁃improved silty sand(CRLS)exhibit a clear dynamic synchronization of strain with stress and resistivity rate of variation.The pressure sensitivity was optimized with CFP dosages ranging from 1.6%to 2.0%.Both insufficient and excessive dosages had a negative impact on pressure sensitivity.It is important to consider the weakening effect of high moisture content on the pressure sensitivity of the specimens in practical applications.展开更多
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ...When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.展开更多
The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratoonin...The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratooning system extends the exposure window to Magnaporthe oryzae infection,thereby elevating the probability of disease incidence.展开更多
There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep ...There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep scenes.In order to recreate the intestinal wall in two dimensions,a method is developed.The normalized Laplacian algorithm is used to enhance the image and transform it into polar coordinates according to the characteristics that intestinal images are not obvious and usually arranged in a circle,in order to extract the new image segments of the current image relative to the previous image.The improved weighted fusion algorithm is then used to sequentially splice the segment images.The experimental results demonstrate that the suggested approach can improve image clarity and minimize noise while maintaining the information content of intestinal images.In addition,the method's seamless transition between the final portions of a panoramic image also demonstrates that the stitching trace has been removed.展开更多
This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected fr...This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected from a laterite clay pit in Ndouloumadjie Dembe (Matam, Northern Senegal) and another from a termite mound in Tattaguine (Fatick, Central Senegal). These samples are first subjected to Geotechnical identification tests. Mud bricks are then made with raw or sifted millet involucre improved to 1%, 2%, and 3% at 5 mm sieve samples. These briquettes are subjected to compression tests and thermal evaluations. Lagrange and Newton methods of numeric modelling are used to test the whole mixture points between 1% and 3% millet involucre for a better correlation between mechanical and thermal parameters. The results show that in Matam, as well as in Tattaguine, these muds, raw or improved, are of good thermomechanical quality when they are used in bricks making. And the thermomechanical coupling quality reaches a maximum situated at 2.125% for Ndouloumadjie and 2.05% for Tattaguine. These briquettes’ building quality depends on the mud content used in iron, aluminum, silica and clay. Thus, same natural materials can be used in the establishment of habitats according to their geotechnical, chemical, mechanical and thermal characteristics.展开更多
Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter us...Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter used in the conventional repetitive controller(CRC), the complex-coefficient filter causes less change in the phase and amplitude of a signal at the frequencies of the periodic signal, especially at the fundamental frequency, when the two filters have the same cutofffrequency.展开更多
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov...Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.展开更多
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
1.The development history of enhanced recovery after surgery(ERAS)Enhanced recovery after surgery(ERAS)is a multimodal perioperative care approach that has evolved over the past 2 decades since its inception.In 1997,P...1.The development history of enhanced recovery after surgery(ERAS)Enhanced recovery after surgery(ERAS)is a multimodal perioperative care approach that has evolved over the past 2 decades since its inception.In 1997,Professor Henrik Kehlet,also known as the“father of ERAS”,from the University of Copenhagen in Denmark first proposed the ERAS concept and discovered its clinical feasibility and superiority,achieving remarkable results.ERAS was initially applied in colorectal surgery;subsequently,the concept gradually gained popularity and application worldwide.展开更多
文摘Objective:To systematically explore the effectiveness of combining Enhanced Recovery After Surgery(ERAS)nursing and empathy intervention for postoperative patients with glioma.Methods:A total of 54 patients with glioma undergoing surgical treatment were selected for the study.The patients were admitted to the hospital between April 2023 and April 2025.The patients were divided into an observation group(n=27)and a control group(n=27)based on a random number table method.Relevant intervention indicators were compared between the two groups.Results:Compared with the control group,the postoperative recovery indicators in the observation group showed significant differences(P<0.05).After intervention,the scores of stress psychological indicators,FMA,NHISS,and ADL in the observation group were all better than those in the control group(P<0.05).The incidence of complications in the observation group was significantly lower than that in the control group(P<0.05).Conclusion:The combined application of empathy intervention and ERAS nursing effectively regulates the postoperative stress psychological state of patients with glioma,significantly improves their limb and neurological functions as well as daily living abilities,accelerates postoperative recovery,and reduces complications.This approach is feasible for wider implementation.
文摘AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets.
文摘BACKGROUND Intravenous infusion is a common method of drug administration in clinical practice.Errors in any aspect of the infusion process,from the verification of medical orders,preparation of the drug solution,to infusion by nursing staff,may cause adverse infusion events.AIM To analyzed the value of improving nursing measures and enhancing nursing management to reduce the occurrence of adverse events in pediatric infusion.METHODS The clinical data of 130 children who received an infusion in the pediatric department of our hospital from May 2020 to May 2021 were analyzed and divided into two groups according to the differences in nursing measures and nursing management:65 patients in the control group received conventional nursing and nursing management interventions,while 65 patients in the observation group received improved nursing measure interventions and enhanced nursing management.The occurrence of adverse events,compliance of children,satisfaction of children’s families,and complaints regarding the transfusion treatment were recorded in both groups.RESULTS The incidence of fluid extravasation and infusion set dislodgement in the observation group were 3.08%and 1.54%,respectively,which were significantly lower than 12.31%and 13.85%in the control group(P<0.05),while repeated punctures and medication addition errors in the observation group were 3.08%and 0.00%,respectively,which were lower than 9.23%and 3.08%in the control group,but there was no significant difference(P>0.05).The compliance rate of children in the observation group was 98.46%(64/65),which was significantly higher than 87.69%(57/65)in the control group,and the satisfaction rate of children’s families was 96.92%(63/65),which was significantly higher than 86.15%(56/65)in the control group(P<0.05).The observation group did not receive any complaints from the child’s family,whereas the control group received four complaints,two of which were due to the crying of the child caused by repeated punctures,one due to the poor attitude of the nurse,and one due to medication addition errors,with a cumulative complaint rate of 6.15%.The cumulative complaint rate of the observation group was significantly lower than that of the control group(P<0.05).CONCLUSION Improving nursing measures and enhancing nursing management can reduce the incidence of fluid extravasation and infusion set dislodgement in pediatric patients,improve children’s compliance and satisfaction of their families,and reduce family complaints.
基金supported by the National Natural Science Foundation of China [grant numbers 42088101 and 42375048]。
文摘Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_4084).
文摘To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy.
基金support from the National Natural Science Foundation of China(Nos.22277056,21977052)the Distinguished Young Scholars of Jiangsu Province(No.BK20230006)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20230977,BK20231090)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.23KJB150020)the Jiangsu Excellent Postdoctoral Program(No.2022ZB758)。
文摘Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.
文摘To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.
文摘Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced into boron particles,investigating the impact of PDA content on the energetic behavior of boron.The results indicated that the PDA coating formed a fishing net structure on the surface of boron particles.The heat release results showed that the combustion calorific value of B@PDA was higher than that of the raw boron.Specifically,the actual combustion heat of boron powder in B@10%PDA increased by 38.08%.Meanwhile,the DSC peak temperature decreased by 100.65℃under similar oxidation rate compared to raw boron.Simultaneously,the B@PDA@AP and B@AP composites were prepared,and their combustion properties were evaluated.It was demonstrated that B@10%PDA@AP exhibited superior performance in terms of peak pressure and burning time,respectively.The peak pressure is 12.43 kPa more than B@AP and burning time is 2.22 times higher than B@AP.Therefore,the coating of PDA effectively inhibits the oxidization of boron during storage and enhances the energetic behavior of boron and corresponding composites.
基金Sponsored by Jilin Provincial Department of Education Scientific Research Project(Grant Nos.JJKH20190875KJ,JJKH20230348KJ).
文摘This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curing duration on the unconfined compressive strength,initial resistivity and pressure sensitivity of the improved soil was systematically analysed.The results showed that the unconfined compressive strength varied non⁃monotonically with increasing CFP dosage,reaching a peak at a dosage of 1.6%.Furthermore,the initial resistivity showed slight variations under different moisture conditions but eventually converged towards the conductive percolation threshold at a dosage of 2.4%.It is worth noting that CFP reinforced lime⁃improved silty sand(CRLS)exhibit a clear dynamic synchronization of strain with stress and resistivity rate of variation.The pressure sensitivity was optimized with CFP dosages ranging from 1.6%to 2.0%.Both insufficient and excessive dosages had a negative impact on pressure sensitivity.It is important to consider the weakening effect of high moisture content on the pressure sensitivity of the specimens in practical applications.
基金National Natural Science Foundation of China(NSFC61773142,NSFC62303136)。
文摘When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.
基金supported by the Key Research and Development Program Project of Hunan Province, China (Grant No. 2023NK2003)the National Key Research and Development Program of China (Grant No. 2022YFD2301001-03)the National Key Research and Development Program of China (Grant No. 2022YFD2301003)
文摘The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratooning system extends the exposure window to Magnaporthe oryzae infection,thereby elevating the probability of disease incidence.
基金the Special Research Fund for the Natural Science Foundation of Chongqing(No.cstc2019jcyjmsxm1351)the Science and Technology Research Project of Chongqing Education Commission(No.KJQN2020006300)。
文摘There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep scenes.In order to recreate the intestinal wall in two dimensions,a method is developed.The normalized Laplacian algorithm is used to enhance the image and transform it into polar coordinates according to the characteristics that intestinal images are not obvious and usually arranged in a circle,in order to extract the new image segments of the current image relative to the previous image.The improved weighted fusion algorithm is then used to sequentially splice the segment images.The experimental results demonstrate that the suggested approach can improve image clarity and minimize noise while maintaining the information content of intestinal images.In addition,the method's seamless transition between the final portions of a panoramic image also demonstrates that the stitching trace has been removed.
文摘This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected from a laterite clay pit in Ndouloumadjie Dembe (Matam, Northern Senegal) and another from a termite mound in Tattaguine (Fatick, Central Senegal). These samples are first subjected to Geotechnical identification tests. Mud bricks are then made with raw or sifted millet involucre improved to 1%, 2%, and 3% at 5 mm sieve samples. These briquettes are subjected to compression tests and thermal evaluations. Lagrange and Newton methods of numeric modelling are used to test the whole mixture points between 1% and 3% millet involucre for a better correlation between mechanical and thermal parameters. The results show that in Matam, as well as in Tattaguine, these muds, raw or improved, are of good thermomechanical quality when they are used in bricks making. And the thermomechanical coupling quality reaches a maximum situated at 2.125% for Ndouloumadjie and 2.05% for Tattaguine. These briquettes’ building quality depends on the mud content used in iron, aluminum, silica and clay. Thus, same natural materials can be used in the establishment of habitats according to their geotechnical, chemical, mechanical and thermal characteristics.
基金supported in part by the National Natural Science Foundation of China(61873348,6230 3266,62273200)JSPS(Japan Society for the Promotion of Science) KAKENHI(22H03998,23K25252)
文摘Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter used in the conventional repetitive controller(CRC), the complex-coefficient filter causes less change in the phase and amplitude of a signal at the frequencies of the periodic signal, especially at the fundamental frequency, when the two filters have the same cutofffrequency.
基金supported by Natural Science Foundation of Jilin Province(No.SKL202302002)Key Research and Development project of Jilin Provincial Science and Technology Department(No.20210204142YY)+2 种基金The Science and Technology Development Program of Jilin Province(No.2020122256JC)Beijing Kechuang Medical Development Foundation Fund of China(No.KC2023-JX-0186BQ079)Talent Reserve Program(TRP),the First Hospital of Jilin University(No.JDYY-TRP-2024007)。
文摘Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.
文摘1.The development history of enhanced recovery after surgery(ERAS)Enhanced recovery after surgery(ERAS)is a multimodal perioperative care approach that has evolved over the past 2 decades since its inception.In 1997,Professor Henrik Kehlet,also known as the“father of ERAS”,from the University of Copenhagen in Denmark first proposed the ERAS concept and discovered its clinical feasibility and superiority,achieving remarkable results.ERAS was initially applied in colorectal surgery;subsequently,the concept gradually gained popularity and application worldwide.