期刊文献+
共找到368,774篇文章
< 1 2 250 >
每页显示 20 50 100
AN ENERGY-EFFICIENT OPTIMIZATION DEPLOYMENT SCHEME FOR WIRELESS SENSOR NETWORKS
1
作者 Li Zhiyuan Wang Ruchuan 《Journal of Electronics(China)》 2010年第4期507-515,共9页
Most of the current deployment schemes for Wireless Sensor Networks (WSNs) do not take the network coverage and connectivity features into account, as well as the energy consumption. This paper introduces topology con... Most of the current deployment schemes for Wireless Sensor Networks (WSNs) do not take the network coverage and connectivity features into account, as well as the energy consumption. This paper introduces topology control into the optimization deployment scheme, establishes the mathe-matical model with the minimum sum of the sensing radius of each sensors, and uses the genetic al-gorithm to solve the model to get the optimal coverage solution. In the optimal coverage deployment, the communication and channel allocation are further studied. Then the energy consumption model of the coverage scheme is built to analyze the performance of the scheme. Finally, the scheme is simulated through the network simulator NS-2. The results show the scheme can not only save 36% energy av-eragely, but also achieve 99.8% coverage rate under the condition of 45 sensors being deployed after 80 iterations. Besides, the scheme can reduce the five times interference among channels. 展开更多
关键词 Wireless Sensor Networks (WSNs) energy-efficient coverage Topology control Channel allocation Genetic algorithm
在线阅读 下载PDF
Hybrid big data optimization based energy-efficient and AI-powered green architecture toward smart cities and 5G-IoT applications
2
作者 Ihab Nassra Juan V.Capella 《Journal of Electronic Science and Technology》 2025年第4期32-45,共14页
The convergence of Internet of things(IoT)and 5G holds immense potential for transforming industries by enabling real-time,massive-scale connectivity and automation.However,the growing number of devices connected to t... The convergence of Internet of things(IoT)and 5G holds immense potential for transforming industries by enabling real-time,massive-scale connectivity and automation.However,the growing number of devices connected to the IoT systems demands a communication network capable of handling vast amounts of data with minimal delay.These generated enormous complex,high-dimensional,high-volume,and high-speed data also brings challenges on its storage,transmission,processing,and energy cost,due to the limited computing capabilities,battery capacity,memory,and energy utilization of current IoT networks.In this paper,a seamless architecture by combining mobile and cloud computing is proposed.It can agilely bargain with 5G-IoT devices,sensor nodes,and mobile computing in a distributed manner,enabling minimized energy cost,high interoperability,and high scalability as well as overcoming the memory constraints.An artificial intelligence(AI)-powered green and energy-efficient architecture is then proposed for 5G-IoT systems and sustainable smart cities.The experimental results reveal that the proposed approach dramatically reduces the transmitted data volume and power consumption and yields superior results regarding interoperability,compression ratio,and energy saving.This is especially critical in enabling the deployment of 5G and even 6G wireless systems for smart cities. 展开更多
关键词 Big data Compression ratio energy-efficient Internet of things Mobile cloud computing Smart cities
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
3
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework
4
作者 Zheng Yao Puqing Chang 《Computers, Materials & Continua》 2026年第1期1160-1177,共18页
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays... As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality. 展开更多
关键词 Edge computing offload serial Isomerism applications many-objective optimization flexible resource scheduling
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
5
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 Topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
CAPGen: An MLLM-Based Framework Integrated with Iterative Optimization Mechanism for Cultural Artifacts Poster Generation
6
作者 Qianqian Hu Chuhan Li +1 位作者 Mohan Zhang Fang Liu 《Computers, Materials & Continua》 2026年第1期494-510,共17页
Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural ... Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation. 展开更多
关键词 Aesthetic poster generation prompt engineering multimodal large language models iterative optimization design principles
在线阅读 下载PDF
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
7
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
8
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning
9
作者 Longfei Gao Weidong Wang Dieyun Ke 《Computers, Materials & Continua》 2026年第1期984-998,共15页
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ... At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems. 展开更多
关键词 Autonomous mobile robot deep reinforcement learning energy optimization multi-attention mechanism prioritized experience replay dueling deep Q-Network
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
10
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Energy-Efficient Full-Duplex UAV Relaying with Trajectory Optimization and Power Control in Maritime Communication Environments 被引量:1
11
作者 Lili Guo Xiaodong Ji Shibing Zhang 《China Communications》 SCIE CSCD 2022年第12期216-231,共16页
This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration... This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes. 展开更多
关键词 UAV communication full-duplex relaying(FDR) energy-efficiENCY maritime communication
在线阅读 下载PDF
An Energy-Efficient UAV Deployment Scheme for Emergency Communications in Air-Ground Networks with Joint Trajectory and Power Optimization 被引量:3
12
作者 Shuo Zhang Shuo Shi +2 位作者 Weizhi Wang Zhenyu Xu Xuemai Gu 《China Communications》 SCIE CSCD 2022年第7期67-78,共12页
The space-air-ground integrated network(SAGIN)has gained widespread attention from academia and industry in recent years.It is widely applied in many practical fields such as global observation and mapping,intelligent... The space-air-ground integrated network(SAGIN)has gained widespread attention from academia and industry in recent years.It is widely applied in many practical fields such as global observation and mapping,intelligent transportation systems,and military missions.As an information carrier of air platforms,the deployment strategy of unmanned aerial vehicles(UAVs)is essential for communication systems’performance.In this paper,we discuss a UAV broadcast coverage strategy that can maximize energy efficiency(EE)under terrestrial users’requirements.Due to the non-convexity of this issue,conventional approaches often solve with heuristics algorithms or alternate optimization.To this end,we propose an iterative algorithm by optimizing trajectory and power allocation jointly.Firstly,we discrete the UAV trajectory into several stop points and propose a user grouping strategy based on the traveling salesman problem(TSP)to acquire the number of stop points and the optimization range.Then,we use the Dinkelbach method to dispose of the fractional form and transform the original problem into an iteratively solvable convex optimization problem by variable substitution and Taylor approximation.Numerical results validate our proposed solution and outperform the benchmark schemes in EE and mission completion time. 展开更多
关键词 SAGIN UAV energy efficiency(EE)maximization trajectory optimization power allocation
在线阅读 下载PDF
Energy-Efficient Routing Using Novel Optimization with Tabu Techniques for Wireless Sensor Network
13
作者 Manar Ahmed Hamza Aisha Hassan Abdalla Hashim +5 位作者 Dalia H.Elkamchouchi Nadhem Nemri Jaber S.Alzahrani Amira Sayed A.Aziz Mnahel Ahmed Ibrahim Abdelwahed Motwakel 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1711-1726,共16页
Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in... Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in largescale wireless sensor networks is considered to be a difficult area in the research.Sensor node clustering is a popular approach for WSN.Moreover,the sensor nodes are grouped to form clusters in a cluster-based WSN environment.The battery performance of the sensor nodes is likewise constrained.As a result,the energy efficiency of WSNs is critical.In specific,the energy usage is influenced by the loads on the sensor node as well as it ranges from the Base Station(BS).Therefore,energy efficiency and load balancing are very essential in WSN.In the proposed method,a novel Grey Wolf Improved Particle Swarm Optimization with Tabu Search Techniques(GW-IPSO-TS)was used.The selection of Cluster Heads(CHs)and routing path of every CH from the base station is enhanced by the proposed method.It provides the best routing path and increases the lifetime and energy efficiency of the network.End-to-end delay and packet loss rate have also been improved.The proposed GW-IPSO-TS method enhances the evaluation of alive nodes,dead nodes,network survival index,convergence rate,and standard deviation of sensor nodes.Compared to the existing algorithms,the proposed method outperforms better and improves the lifetime of the network. 展开更多
关键词 Wireless sensor networks energy-efficient load balancing energy consumption network’s lifetime cluster heads grey wolf optimization tabu search particle swarm optimization
在线阅读 下载PDF
Bio-Inspired Intelligent Routing in WSN: Integrating Mayfly Optimization and Enhanced Ant Colony Optimization for Energy-Efficient Cluster Formation and Maintenance
14
作者 V.G.Saranya S.Karthik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期127-150,共24页
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node... Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE). 展开更多
关键词 Enhanced ant colony optimization mayfly optimization algorithm wireless sensor networks cluster head base station(BS)
在线阅读 下载PDF
An Energy-Efficient MAC Protocol for WSNs: Game-Theoretic Constraint Optimization with Multiple Objectives
15
作者 Liqiang ZHAO Le GUO +1 位作者 CONG Li]] Hailin ZHANG 《Wireless Sensor Network》 2009年第4期358-364,共7页
In WSNs, energy conservation is the primary goal, while throughput and delay are less important. This re-sults in a tradeoff between performance (e.g., throughput, delay, jitter, and packet-loss-rate) and energy con-s... In WSNs, energy conservation is the primary goal, while throughput and delay are less important. This re-sults in a tradeoff between performance (e.g., throughput, delay, jitter, and packet-loss-rate) and energy con-sumption. In this paper, the problem of energy-efficient MAC protocols in WSNs is modeled as a game-theoretic constraint optimization with multiple objectives. After introducing incompletely cooperative game theory, based on the estimated game state (e.g., the number of competing nodes), each node independ-ently implements the optimal equilibrium strategy under the given constraints (e.g., the used energy and QoS requirements). Moreover, a simplified game-theoretic constraint optimization scheme (G-ConOpt) is pre-sented in this paper, which is easy to be implemented in current WSNs. Simulation results show that G-ConOpt can increase system performance while still maintaining reasonable energy consumption. 展开更多
关键词 Wireless Sensor Network MAC Energy Efficiency GAME Theory CONSTRAINT optimization
在线阅读 下载PDF
LOA-RPL:Novel Energy-Efficient Routing Protocol for the Internet of Things Using Lion Optimization Algorithm to Maximize Network Lifetime
16
作者 Sankar Sennan Somula Ramasubbareddy +2 位作者 Anand Nayyar Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2021年第10期351-371,共21页
Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a c... Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols. 展开更多
关键词 Internet of things cluster head clustering protocol optimization algorithm lion optimization algorithm network lifetime routing protocol wireless sensor networks energy consumption low-power and lossy networks
在线阅读 下载PDF
Energy-Efficient Resource Optimization for Massive MIMO Networks Considering Network Load
17
作者 Samira Mujkic Suad Kasapovic Mohammed Abuibaid 《Computers, Materials & Continua》 SCIE EI 2022年第4期871-888,共18页
This paper investigates the resource optimization problem for a multi-cell massive multiple-input multiple-output(MIMO)network in which each base station(BS)is equipped with a large number of antennas and each base st... This paper investigates the resource optimization problem for a multi-cell massive multiple-input multiple-output(MIMO)network in which each base station(BS)is equipped with a large number of antennas and each base station(BS)adapts the number of antennas to the daily load profile(DLP).This paper takes into consideration user location distribution(ULD)variation and evaluates its impact on the energy efficiency of load adaptive massive MIMO system.ULD variation is modeled by dividing the cell into two coverage areas with different user densities:boundary focused(BF)and center focused(CF)ULD.All cells are assumed identical in terms of BS configurations,cell loading,and ULD variation and each BS is modeled as an M/G/m/m state dependent queue that can serve a maximum number of users at the peak load.Together with energy efficiency(EE)we analyzed deployment and spectrum efficiency in our adaptive massive MIMO system by evaluating the impact of cell size,available bandwidth,output power level of the BS,and maximum output power of the power amplifier(PA)at different cell loading.We also analyzed average energy consumption on an hourly basis per BS for the model proposed for data traffic in Europe and also the model proposed for business,residential,street,and highway areas. 展开更多
关键词 Massive MIMO traffic load energy efficiency user location distribution optimization
在线阅读 下载PDF
An Energy-Efficient Multi-swarm Optimization in Wireless Sensor Networks
18
作者 Reem Alkanhel Kalaiselvi Chinnathambi +4 位作者 C.Thilagavathi Mohamed Abouhawwash Mona A.Al duailij Manal Abdullah Alohali Doaa Sami Khafaga 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1571-1583,共13页
Wireless Sensor Networks are a group of sensors with inadequate power sources that are installed in a particular region to gather information from the surroundings.Designing energy-efficient data gathering methods in l... Wireless Sensor Networks are a group of sensors with inadequate power sources that are installed in a particular region to gather information from the surroundings.Designing energy-efficient data gathering methods in large-scale Wireless Sensor Networks(WSN)is one of the most difficult areas of study.As every sensor node has afinite amount of energy.Battery power is the most significant source in the WSN.Clustering is a well-known technique for enhan-cing the power feature in WSN.In the proposed method multi-Swarm optimiza-tion based on a Genetic Algorithm and Adaptive Hierarchical clustering-based routing protocol are used for enhancing the network’s lifespan and routing opti-mization.By using distributed data transmission modification,an adaptive hier-archical clustering-based routing algorithm for power consumption is presented to ensure continuous coverage of the entire area.To begin,a hierarchical cluster-ing-based routing protocol is presented in terms of balancing node energy con-sumption.The Multi-Swarm optimization(MSO)based Genetic Algorithms are proposed to select an efficient Cluster Head(CH).It also improves the network’s longevity and optimizes the routing.As a result of the study’sfindings,the pro-posed MSO-Genetic Algorithm with Hill climbing(GAHC)is effective,as it increases the number of clusters created,average energy expended,lifespan com-putation reduces average packet loss,and end-to-end delay. 展开更多
关键词 CLUSTERING energy consumption genetic algorithm multi swarm optimization adaptive hierarchical clustering ROUTING cluster head
在线阅读 下载PDF
Energy-Efficient Clustering Using Optimization with Locust Game Theory
19
作者 P.Kavitha Rani Hee-Kwon Chae +1 位作者 Yunyoung Nam Mohamed Abouhawwash 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2591-2605,共15页
Wireless sensor networks(WSNs)are made up of several sensors located in a specific area and powered by a finite amount of energy to gather environmental data.WSNs use sensor nodes(SNs)to collect and transmit data.Howe... Wireless sensor networks(WSNs)are made up of several sensors located in a specific area and powered by a finite amount of energy to gather environmental data.WSNs use sensor nodes(SNs)to collect and transmit data.However,the power supplied by the sensor network is restricted.Thus,SNs must store energy as often as to extend the lifespan of the network.In the proposed study,effective clustering and longer network lifetimes are achieved using mul-ti-swarm optimization(MSO)and game theory based on locust search(LS-II).In this research,MSO is used to improve the optimum routing,while the LS-II approach is employed to specify the number of cluster heads(CHs)and select the best ones.After the CHs are identified,the other sensor components are allo-cated to the closest CHs to them.A game theory-based energy-efficient clustering approach is applied to WSNs.Here each SN is considered a player in the game.The SN can implement beneficial methods for itself depending on the length of the idle listening time in the active phase and then determine to choose whether or not to rest.The proposed multi-swarm with energy-efficient game theory on locust search(MSGE-LS)efficiently selects CHs,minimizes energy consumption,and improves the lifetime of networks.The findings of this study indicate that the proposed MSGE-LS is an effective method because its result proves that it increases the number of clusters,average energy consumption,lifespan extension,reduction in average packet loss,and end-to-end delay. 展开更多
关键词 Wireless sensor network CLUSTERING routing cluster head energy consumption network’s lifetime multi swarm optimization game theory
在线阅读 下载PDF
Optimal Energy-Efficient Transmission for Hybrid Spectrum Sharing in Cooperative Cognitive Radio Networks 被引量:9
20
作者 Linna Hu Rui Shi +3 位作者 Minghe Mao Zhiyu Chen Hongxi Zhou Weiliang Li 《China Communications》 SCIE CSCD 2019年第6期150-161,共12页
In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste... In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network. 展开更多
关键词 cognitive radio networks COOPERATIVE SPECTRUM SENSING energy-efficiENCY HYBRID SPECTRUM sharing power control SENSING time optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部