Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous...Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.展开更多
Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the stru...Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields.展开更多
To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and...To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and sc is the peak strength),extensive UC and uniaxial graded cyclical loading-unloading(GCLU)tests were performed on four rock types.In the GCLU tests,four unloading stress levels were designated when σ<0.9σc and six unloading stress levels were designated forσ≥0.9σc.The variations in the elastic energy density(ue),dissipative energy density(ud),and energy storage efficiency(C)for the four rock types under GCLU tests were analyzed.Based on the variation of ue whenσ≥0:9σc,a method for calculating the peak energy density was proposed.The energy evolution in rock under UC condition before the post-peak stage was examined.The relationship between C0.9(C atσ≥0:9σc)and mechanical behavior of rocks was explored,and the damage evolution of rock was analyzed in view of energy.Compared with that of the three existing methods,the accuracy of the calculation method of peak energy density proposed in this study is higher.These findings could provide a theoretical foundation for more accurately revealing the failure behavior of rock from an energy perspective.展开更多
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe...In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.展开更多
To address the challenges of long commuting times,traffic congestion,high energy consumption,and emissions in inter-city travel,a new type of flying coach has been developed.This innovation aims to significantly short...To address the challenges of long commuting times,traffic congestion,high energy consumption,and emissions in inter-city travel,a new type of flying coach has been developed.This innovation aims to significantly shorten inter-city commuting times,enhance travel efficiency,and simultaneously reduce energy consumption and emissions.The flying coach integrates rail power supply technology,an intelligent operating system,and advanced new materials,comprising a catenary power supply guide rod and various sensor components.Based on analysis of traditional aircraft design principles,the research team simulated the design of the rail-powered flying coach using software such as AutoCAD and SolidWorks for three-dimensional modeling.The analysis results indicate that,compared to traditional aircraft and rail trains,the design of the new flying coach reduces its overall weight while maintaining carrying capacity,thereby improving commuting efficiency and environmental performance.This development lays a solid foundation for creating a greener,more efficient,and convenient inter-city transportation network.展开更多
The potential energy curves of the ground state X2∑+g of the fluorine molecule have been accurately reconstructed employing the Ryderg-Klein-Rees (RKR) method extrapolated by a Hulburt and Hirschfeler potential fu...The potential energy curves of the ground state X2∑+g of the fluorine molecule have been accurately reconstructed employing the Ryderg-Klein-Rees (RKR) method extrapolated by a Hulburt and Hirschfeler potential function for longer internuclear distances. Solving the corresponding radial one-dimensional Schr?dinger equation of nuclear motion yields 22 bound vibrational levels above v=0. The comparison of these theoretical levels with the experimental data yields a mean absolute deviation of about 7.6 cm^-1 over the 23 levels. The highest vibrational level energy obtained using this method is 13308.16 cm?1 and the relative deviation compared with the experimental datum of 13408.49 cm^-1 is only 0.74%. The value from our method is much closer and more accurate than the value obtained by the quantum mechanical ab initio method by Bytautas. The reported agreement of the vibrational levels and dissociation energy with experiment is contingent upon the potential energy curve of the F2 ground state.展开更多
Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were per...Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.展开更多
Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The st...Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The study is carried out based on strain-displacement relationship from Love's shell theory with beam functions as axial modal function.A manifold layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are stainless steel and the middle layer is aluminum.The homogeneous cylindrical shell is made-up of isotropic one layer with stainless steel.The governing equations with uniform external lateral pressure for homogeneous isotropic and manifold layered isotropic cylindrical shells are obtained using energy functional by the Lagrangian function with Rayleigh-Ritz method.The boundary conditions that are presented at the end conditions of the cylindrical shell are simply supported-simply supported,clamped-clamped and free-free.The influences of uniform external lateral pressure and symmetrical boundary conditions on the natural frequency characteristics for both homogeneous and manifold layered isotropic cylindrical shells are examined.For all boundary conditions considered,the natural frequency of both cylindrical shells with symmetric uniform lateral pressure increases as h/R ratio increases and those considering natural frequency of the both cylindrical shells with symmetric uniform lateral pressure decrease as L/R ratio increases.展开更多
The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1...The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1∑+ state of LiH, A3∏(1) state of IC1, X^1∑+ state of CsH, A(3∏1) and B0+(3∏) states of CIF, 21∏ state of KRb, X^1∑+ state of CO, and c^3∑+ state of NaK molecule. The results show that the values of De computed by using the AEM are satisfactorily accurate compared with experimental ones. The AEM can serve as an economic and useful tool to generate a reliable De within an allowed experimental error for the electronic states whose molecular dissociation energies are unavailable from the existing literature展开更多
The first-order revision and the approximation analytical formula of the energy levels for hydrogen-like atoms under the condition of Debye shielding potential are achieved by means of the Rayleigh–Schr?dinger pertur...The first-order revision and the approximation analytical formula of the energy levels for hydrogen-like atoms under the condition of Debye shielding potential are achieved by means of the Rayleigh–Schr?dinger perturbation theory; meanwhile, the corresponding recurrence relations are obtained from the use of the solution of power series. Based on the above solutions and with the use of energy consistent method the equivalent value of second-order reversion under the condition of Debye shielding potential is produced as well and the result is compared with the data obtained by the numerical method. Besides, the critical bond-state and corresponding cut-off conditions are discussed.展开更多
In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear conve...In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.展开更多
An analytical model for straight hemming was developed based on minimum energy method to study the effect of flanging die corner radius on hemming qualities.In order to calculate plastic strain and strain energy more ...An analytical model for straight hemming was developed based on minimum energy method to study the effect of flanging die corner radius on hemming qualities.In order to calculate plastic strain and strain energy more exactly,the neutral layer of specimen corner after hemming is assumed to be a half ellipse with its major semi-axis unknown.Isotropic hardening rule is adopted to describe bending and reverse bending processes neglecting Bauschinger effect.The model takes into account the material property parameters in order to satisfy a wide application range of different materials.Specimen profile,creepage/growing(roll-in/roll-out) and maximum equivalent strain are predicted,which are greatly influenced by the flanging die corner radius.Experimental facilities were designed and hemming experiments were undertaken.The predicted results of the present analytical model were compared to experimental data as well as finite element(FE) simulation results.It was confirmed that they are in good agreement,and the model can be used to evaluate whether the material used as an outer panel for hemming is appropriate and to optimize process parameters when the material used for hemming is changed.展开更多
A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardwa...A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardware and software of this apparatus were designed,and detecting algorithms based on conservation of energy method (COEM) were presented. According to the law of conservation of energy that the energy derived by human body equals energy consumed by metabolism,and the relationship between convection,evaporation,radiation and the BGL was established. The sensor module was designed. 20 healthy volunteers were involved in the clinical experiment. The BGL measured by an automatic biochemical analyzer (ABA) was set as the reference. Regression analysis was performed to compare the conservation of energy method with the biochemical method,using the 20 data points with blood glucose concentrations ranging from 680 to 1 100 mg/L. Reproducibility was measured for healthy fasting volunteers. The results show that the means of BGL detected by NBGMA and ANA are very close to each other,and the difference of standard deviation (SD) is 24.7 mg/L. The correlative coefficient is 0.807. The coefficient of variation (CV) is 4% at 921.6 mg/L. The resultant regression is evaluated by the Clarke error grid analysis (EGA) and all data points are included in the clinically acceptable regions (region A:100%,region B:0%). Accordingly,it is feasible to measure BGL with COEM.展开更多
A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method propo...A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method proposed is different from the traditionalone, for which the unknown variables are selected just in one classsuch as displacements or stresses. The present method selects thevariables in the mixed form with both displacement and stress. As themethod is established in the hybrid space, the information found inthe previous incremental step can be used for the solution of thepresent step, making the algorithm highly effi- cient in thenumerical solution process of quadratic programming problems. Theresults obtained in the exm- ples of the elastic-plastic solution ofthe truss structures verify what has been predicted in thetheoretical anal- ysis.展开更多
Wave energy resource is a very important ocean renewable energy. A reliable assessment of wave energy resources must be performed before they can be exploited. Compared with wave model, altimeter can provide more accu...Wave energy resource is a very important ocean renewable energy. A reliable assessment of wave energy resources must be performed before they can be exploited. Compared with wave model, altimeter can provide more accurate in situ observations for ocean wave which can be as a novel method for wave energy assessment.The advantage of altimeter data is to provide accurate significant wave height observations for wave. In order to develop characteristic and advantage of altimeter data and apply altimeter data to wave energy assessment, in this study, we established an assessing method for wave energy in local sea area which is dedicated to altimeter data.This method includes three parts including data selection and processing, establishment of evaluation indexes system and criterion of regional division. Then a case study of Northwest Pacific was performed to discuss specific application for this method. The results show that assessing method in this paper can assess reserves and temporal and spatial distribution effectively and provide scientific references for the siting of wave power plants and the design of wave energy convertors.展开更多
We report on the auditory Hopf amplification contributed by the electrical energy of the hair cell during its bundle deflecting. An energy method to calculate the active force is adopted according to the electrical en...We report on the auditory Hopf amplification contributed by the electrical energy of the hair cell during its bundle deflecting. An energy method to calculate the active force is adopted according to the electrical energy consumption of the hair cell. After some experimental data was analyzed and simulated, we find that the electrical energy determines the value of the active force and enlarges the mechanical response of the hair bundle. This amplification is controlled by the cell voltage and makes the sensor a Hopf vibrator with hearing nonlinear characteristics. A velocity-dependent active force derived previously from the force-gating channel operation strongly reinforces our conclusion.展开更多
In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from...In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from the existing works, the proposed algorithm is energy-efficient which is more applicable to the future green network. It considers both the sum-MSE problem and the power consumption problem for the users under the relay power constraint. Based on the optimal condition decomposition(OCD) method, the energy-efficient precoders at the users can be designed separately with limited information exchanged. The proposed relay beamforming algorithm is based on the alternative direction method of multipliers(ADMM) which has simpler iterative solution and enjoys good convergence. Simulation results demonstrate the performance of the proposed algorithms in terms of power consumption and MSE performance.展开更多
New approximate formulas are proposed to determine the natural frequencies of structures considering the effects of panel zone flexibility and soil-structure interaction. Several structures with various earthquake res...New approximate formulas are proposed to determine the natural frequencies of structures considering the effects of panel zone flexibility and soil-structure interaction. Several structures with various earthquake resisting systems are idealized as prismatic cantilever flexural-shear beams. Floor masses are considered as lumped masses at each story level and masses of columns are evenly distributed along the cantilever beam. Soil-structure interaction is considered as axial and rotational springs, whose potential energy are formulated and incorporated into overall potential energy of the structure. Subsequently, natural frequency equations are derived on the basis of energy conservation principle. The effect of axial forces on natural frequency is also considered in the proposed formulas. Using the method presented in this study, natural frequencies are computed using a simplified method with no complex numerical modeling. The proposed formulas are verified via experimental and numerical methods. Close agreement between the results from these three approaches are observed. Furthermore, the effects of panel zone flexibility, continuity plates and doubler plates on the natural frequencies of buildings are investigated.展开更多
By studying the pile-formula and stress-wave methods (e.g., CASE method), the authors propose a new method for testing piles using the single-impact energy and P-S curves. The vibration and wave figures are recorded,...By studying the pile-formula and stress-wave methods (e.g., CASE method), the authors propose a new method for testing piles using the single-impact energy and P-S curves. The vibration and wave figures are recorded, and the dynamic and static displacements are measured by different transducers near the top of piles when the pile is im- pacted by a heavy hammer or micro-rocket. By observing the transformation coefficient of driving energy (total energy), the consumed energy of wave motion and vibration and so on, the vertical bearing capacity for single pile is measured and calculated. Then, using the vibration wave diagram, the dynamic relation curves between the force (P) and the displacement (S) is calculated and the yield points are determined. Using the static-loading test, the dynamic results are checked and the relative constants of dynamic-static P-S curves are determined. Then the sub- sidence quantity corresponding to the bearing capacity is determined. Moreover, the shaped quality of the pile body can be judged from the formation of P-S curves.展开更多
The characteristics of the normal equation created in recovering the Earth gravity model (EGM) by least-squares (LS) adjustment from the in-situ disturbing potential is discussed in detail. It can be concluded tha...The characteristics of the normal equation created in recovering the Earth gravity model (EGM) by least-squares (LS) adjustment from the in-situ disturbing potential is discussed in detail. It can be concluded that the normal equation only depends on the orbit, and the choice of a priori gravity model has no effect on the LS solution. Therefore, the accuracy of the recovered gravity model can be accurately simulated. Starting from this point, four sets of disturbing potential along the orbit with different level of noise were simulated and were used to recover the EGM. The results show that on the current accuracy level of the accelerometer calibration, the accuracy of the EGM is not sufficient to reflect the time variability of the Earth's gravity field, as the dynamic method revealed.展开更多
文摘Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.
基金financially supported by the National Natural Science Foundation of China(Nos.12302228 and 12372170)。
文摘Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields.
基金the National Natural Science Foundation of China(Grant Nos.52104133 and 52304227)the Postdoctoral Foundation of Henan Province(Grant No.HN2022015)are appreciated.
文摘To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and sc is the peak strength),extensive UC and uniaxial graded cyclical loading-unloading(GCLU)tests were performed on four rock types.In the GCLU tests,four unloading stress levels were designated when σ<0.9σc and six unloading stress levels were designated forσ≥0.9σc.The variations in the elastic energy density(ue),dissipative energy density(ud),and energy storage efficiency(C)for the four rock types under GCLU tests were analyzed.Based on the variation of ue whenσ≥0:9σc,a method for calculating the peak energy density was proposed.The energy evolution in rock under UC condition before the post-peak stage was examined.The relationship between C0.9(C atσ≥0:9σc)and mechanical behavior of rocks was explored,and the damage evolution of rock was analyzed in view of energy.Compared with that of the three existing methods,the accuracy of the calculation method of peak energy density proposed in this study is higher.These findings could provide a theoretical foundation for more accurately revealing the failure behavior of rock from an energy perspective.
文摘In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.
基金College Student Innovation Training Program Project(S202410225147)。
文摘To address the challenges of long commuting times,traffic congestion,high energy consumption,and emissions in inter-city travel,a new type of flying coach has been developed.This innovation aims to significantly shorten inter-city commuting times,enhance travel efficiency,and simultaneously reduce energy consumption and emissions.The flying coach integrates rail power supply technology,an intelligent operating system,and advanced new materials,comprising a catenary power supply guide rod and various sensor components.Based on analysis of traditional aircraft design principles,the research team simulated the design of the rail-powered flying coach using software such as AutoCAD and SolidWorks for three-dimensional modeling.The analysis results indicate that,compared to traditional aircraft and rail trains,the design of the new flying coach reduces its overall weight while maintaining carrying capacity,thereby improving commuting efficiency and environmental performance.This development lays a solid foundation for creating a greener,more efficient,and convenient inter-city transportation network.
基金This work was supported by the National Natural Science Foundation of China (No.20273066).
文摘The potential energy curves of the ground state X2∑+g of the fluorine molecule have been accurately reconstructed employing the Ryderg-Klein-Rees (RKR) method extrapolated by a Hulburt and Hirschfeler potential function for longer internuclear distances. Solving the corresponding radial one-dimensional Schr?dinger equation of nuclear motion yields 22 bound vibrational levels above v=0. The comparison of these theoretical levels with the experimental data yields a mean absolute deviation of about 7.6 cm^-1 over the 23 levels. The highest vibrational level energy obtained using this method is 13308.16 cm?1 and the relative deviation compared with the experimental datum of 13408.49 cm^-1 is only 0.74%. The value from our method is much closer and more accurate than the value obtained by the quantum mechanical ab initio method by Bytautas. The reported agreement of the vibrational levels and dissociation energy with experiment is contingent upon the potential energy curve of the F2 ground state.
基金supported by University of Kashan(Grant No.158426/5)
文摘Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.
文摘Energy method for the vibration of two types of cylindrical shells,namely thin-walled homogeneous isotropic and manifold layered isotropic cylindrical shells under uniform external lateral pressure is presented.The study is carried out based on strain-displacement relationship from Love's shell theory with beam functions as axial modal function.A manifold layered cylindrical shell configuration is formed by three layers of isotropic material where the inner and outer layers are stainless steel and the middle layer is aluminum.The homogeneous cylindrical shell is made-up of isotropic one layer with stainless steel.The governing equations with uniform external lateral pressure for homogeneous isotropic and manifold layered isotropic cylindrical shells are obtained using energy functional by the Lagrangian function with Rayleigh-Ritz method.The boundary conditions that are presented at the end conditions of the cylindrical shell are simply supported-simply supported,clamped-clamped and free-free.The influences of uniform external lateral pressure and symmetrical boundary conditions on the natural frequency characteristics for both homogeneous and manifold layered isotropic cylindrical shells are examined.For all boundary conditions considered,the natural frequency of both cylindrical shells with symmetric uniform lateral pressure increases as h/R ratio increases and those considering natural frequency of the both cylindrical shells with symmetric uniform lateral pressure decrease as L/R ratio increases.
基金Project supported by the Science Foundation of China West Normal University (Grant No 05B016) and the Science Foundation of Sichuan province Educational Bureau of China (Grant No 2006A080).
文摘The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1∑+ state of LiH, A3∏(1) state of IC1, X^1∑+ state of CsH, A(3∏1) and B0+(3∏) states of CIF, 21∏ state of KRb, X^1∑+ state of CO, and c^3∑+ state of NaK molecule. The results show that the values of De computed by using the AEM are satisfactorily accurate compared with experimental ones. The AEM can serve as an economic and useful tool to generate a reliable De within an allowed experimental error for the electronic states whose molecular dissociation energies are unavailable from the existing literature
文摘The first-order revision and the approximation analytical formula of the energy levels for hydrogen-like atoms under the condition of Debye shielding potential are achieved by means of the Rayleigh–Schr?dinger perturbation theory; meanwhile, the corresponding recurrence relations are obtained from the use of the solution of power series. Based on the above solutions and with the use of energy consistent method the equivalent value of second-order reversion under the condition of Debye shielding potential is produced as well and the result is compared with the data obtained by the numerical method. Besides, the critical bond-state and corresponding cut-off conditions are discussed.
基金the NSFC grant 11871428the Nature Science Research Program for Colleges and Universities of Jiangsu Province grant 20KJB110011Qiang Zhang:Research supported by the NSFC grant 11671199。
文摘In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.
基金Project supported by the National Natural Science Foundation for Key Program of China (No. 50835002),the National Natural Science Foundation of China (No. 50975174),the National Natural Science Foundation for Innovative Research Group of China (No. 50821003)
文摘An analytical model for straight hemming was developed based on minimum energy method to study the effect of flanging die corner radius on hemming qualities.In order to calculate plastic strain and strain energy more exactly,the neutral layer of specimen corner after hemming is assumed to be a half ellipse with its major semi-axis unknown.Isotropic hardening rule is adopted to describe bending and reverse bending processes neglecting Bauschinger effect.The model takes into account the material property parameters in order to satisfy a wide application range of different materials.Specimen profile,creepage/growing(roll-in/roll-out) and maximum equivalent strain are predicted,which are greatly influenced by the flanging die corner radius.Experimental facilities were designed and hemming experiments were undertaken.The predicted results of the present analytical model were compared to experimental data as well as finite element(FE) simulation results.It was confirmed that they are in good agreement,and the model can be used to evaluate whether the material used as an outer panel for hemming is appropriate and to optimize process parameters when the material used for hemming is changed.
基金Project(07JJ6133) supported by the Natural Science Foundation of Hunan Province, China
文摘A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardware and software of this apparatus were designed,and detecting algorithms based on conservation of energy method (COEM) were presented. According to the law of conservation of energy that the energy derived by human body equals energy consumed by metabolism,and the relationship between convection,evaporation,radiation and the BGL was established. The sensor module was designed. 20 healthy volunteers were involved in the clinical experiment. The BGL measured by an automatic biochemical analyzer (ABA) was set as the reference. Regression analysis was performed to compare the conservation of energy method with the biochemical method,using the 20 data points with blood glucose concentrations ranging from 680 to 1 100 mg/L. Reproducibility was measured for healthy fasting volunteers. The results show that the means of BGL detected by NBGMA and ANA are very close to each other,and the difference of standard deviation (SD) is 24.7 mg/L. The correlative coefficient is 0.807. The coefficient of variation (CV) is 4% at 921.6 mg/L. The resultant regression is evaluated by the Clarke error grid analysis (EGA) and all data points are included in the clinically acceptable regions (region A:100%,region B:0%). Accordingly,it is feasible to measure BGL with COEM.
基金the National Natural Science Foundation of China(No.50178916,No.19732020 and No.19872016)the National Key Basic lteseareh Special Foundation(No.G1999032805)+1 种基金the Special Funds for Major State Basic Researeh Projectsthe Foundation for University Key Teachers by the Ministry of Education of China
文摘A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method proposed is different from the traditionalone, for which the unknown variables are selected just in one classsuch as displacements or stresses. The present method selects thevariables in the mixed form with both displacement and stress. As themethod is established in the hybrid space, the information found inthe previous incremental step can be used for the solution of thepresent step, making the algorithm highly effi- cient in thenumerical solution process of quadratic programming problems. Theresults obtained in the exm- ples of the elastic-plastic solution ofthe truss structures verify what has been predicted in thetheoretical anal- ysis.
基金The Dragon III Project of ESA-MOST Dragon Cooperation under contract No.10412the Ocean Renewable Energy Special Fund Project of State Oceanic Administration under contract No.GHME2011ZC07the National Natural Science Foundation of China(NSFC)under contract No.41176157
文摘Wave energy resource is a very important ocean renewable energy. A reliable assessment of wave energy resources must be performed before they can be exploited. Compared with wave model, altimeter can provide more accurate in situ observations for ocean wave which can be as a novel method for wave energy assessment.The advantage of altimeter data is to provide accurate significant wave height observations for wave. In order to develop characteristic and advantage of altimeter data and apply altimeter data to wave energy assessment, in this study, we established an assessing method for wave energy in local sea area which is dedicated to altimeter data.This method includes three parts including data selection and processing, establishment of evaluation indexes system and criterion of regional division. Then a case study of Northwest Pacific was performed to discuss specific application for this method. The results show that assessing method in this paper can assess reserves and temporal and spatial distribution effectively and provide scientific references for the siting of wave power plants and the design of wave energy convertors.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374118 and 90820001the Science Foundation of Hubei Province under Grant No 2013CFB289
文摘We report on the auditory Hopf amplification contributed by the electrical energy of the hair cell during its bundle deflecting. An energy method to calculate the active force is adopted according to the electrical energy consumption of the hair cell. After some experimental data was analyzed and simulated, we find that the electrical energy determines the value of the active force and enlarges the mechanical response of the hair bundle. This amplification is controlled by the cell voltage and makes the sensor a Hopf vibrator with hearing nonlinear characteristics. A velocity-dependent active force derived previously from the force-gating channel operation strongly reinforces our conclusion.
基金supported by China National S&T Major Project 2013ZX03003002-003National Natural Science Foundation of China under Grant No. 61176027, No.61421001111 Project of China under Grant B14010
文摘In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from the existing works, the proposed algorithm is energy-efficient which is more applicable to the future green network. It considers both the sum-MSE problem and the power consumption problem for the users under the relay power constraint. Based on the optimal condition decomposition(OCD) method, the energy-efficient precoders at the users can be designed separately with limited information exchanged. The proposed relay beamforming algorithm is based on the alternative direction method of multipliers(ADMM) which has simpler iterative solution and enjoys good convergence. Simulation results demonstrate the performance of the proposed algorithms in terms of power consumption and MSE performance.
文摘New approximate formulas are proposed to determine the natural frequencies of structures considering the effects of panel zone flexibility and soil-structure interaction. Several structures with various earthquake resisting systems are idealized as prismatic cantilever flexural-shear beams. Floor masses are considered as lumped masses at each story level and masses of columns are evenly distributed along the cantilever beam. Soil-structure interaction is considered as axial and rotational springs, whose potential energy are formulated and incorporated into overall potential energy of the structure. Subsequently, natural frequency equations are derived on the basis of energy conservation principle. The effect of axial forces on natural frequency is also considered in the proposed formulas. Using the method presented in this study, natural frequencies are computed using a simplified method with no complex numerical modeling. The proposed formulas are verified via experimental and numerical methods. Close agreement between the results from these three approaches are observed. Furthermore, the effects of panel zone flexibility, continuity plates and doubler plates on the natural frequencies of buildings are investigated.
基金Key Projects of Tenth Five-year Plan of Yunnan Province (54-02-02).
文摘By studying the pile-formula and stress-wave methods (e.g., CASE method), the authors propose a new method for testing piles using the single-impact energy and P-S curves. The vibration and wave figures are recorded, and the dynamic and static displacements are measured by different transducers near the top of piles when the pile is im- pacted by a heavy hammer or micro-rocket. By observing the transformation coefficient of driving energy (total energy), the consumed energy of wave motion and vibration and so on, the vertical bearing capacity for single pile is measured and calculated. Then, using the vibration wave diagram, the dynamic relation curves between the force (P) and the displacement (S) is calculated and the yield points are determined. Using the static-loading test, the dynamic results are checked and the relative constants of dynamic-static P-S curves are determined. Then the sub- sidence quantity corresponding to the bearing capacity is determined. Moreover, the shaped quality of the pile body can be judged from the formation of P-S curves.
基金Funded by the National Natural Science Foundation of China (No.40274004), and the Open Fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (No. 06-09). The authors are grateful to Prof. CHAO Dingbo for his critical comments and also thank Dr. Dadzie very much for his proof-reading.
文摘The characteristics of the normal equation created in recovering the Earth gravity model (EGM) by least-squares (LS) adjustment from the in-situ disturbing potential is discussed in detail. It can be concluded that the normal equation only depends on the orbit, and the choice of a priori gravity model has no effect on the LS solution. Therefore, the accuracy of the recovered gravity model can be accurately simulated. Starting from this point, four sets of disturbing potential along the orbit with different level of noise were simulated and were used to recover the EGM. The results show that on the current accuracy level of the accelerometer calibration, the accuracy of the EGM is not sufficient to reflect the time variability of the Earth's gravity field, as the dynamic method revealed.