Detection of local strain at the nanometer scale with high sensitivity remains challenging.Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phono...Detection of local strain at the nanometer scale with high sensitivity remains challenging.Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency.As a non-polar crystal,intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency.The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon.The activated phonon further interacts with continuum electronic transitions,and generates a strong Fano resonance.The resulted Fano resonance features a very sharp near-field infrared scattering peak,which leads to an extraordinary sensitivity of-0.002%for the strain detection.Our results demonstrate the first nano-scale near-field Fano resonance,provide a new way to probe local strains with high sensitivity in non-polar crystals,and open exciting possibilities for studying strain-induced rich phenomena.展开更多
The immune checkpoint blockade has revolutionized cancer treatment.However,not all cancer types are susceptible to this therapy.Even in melanoma,one of the best scenario,about half of the patients do not respond to im...The immune checkpoint blockade has revolutionized cancer treatment.However,not all cancer types are susceptible to this therapy.Even in melanoma,one of the best scenario,about half of the patients do not respond to immune checkpoint blockade.Since CD8+T cell is the main driving force behind cancer elimination,then having a complete and competent T cell repertoire to cover all possible cancer antigens expressed by cancer cells should be a determining factor to the success of this therapy.Conversely,if there are'holes'in patients’T cell repertoire and/or'weak spots'manifested as functional dysregulation or exhaustion on T cells specific to a set of cancer antigens that dominantly expressed by cancer cells,cancer immune escape is inevitable.However,these two types of cancer immune escape might need different treatment strategies:the first group with'holes'in the T cell repertoire,whether the'holes'are taking on a form of missing T cells to cover these cancer antigens or missing high-affinity TCRs that are known to be more sensitive to antigen stimulation,would be benefited from TCR re-directed adoptive cell transfer(ACT)therapy;the other group with T cell repertoire'weak spots'would be benefited from immune checkpoint blockade alone or in combination with additional stimulatory factors such as cytokines and peptide vaccine.In the past decade,we have developed several tools to profile the T cell repertoire from T cell receptor diversity to T cell receptor affinity to high-throughput linking antigen specificity to single T cell receptor sequences in large scale.In this talk,I will first introduce these tools and then give examples on how we use them to answer some of the fundamental questions in systems immunology with a focus on cancer immunology,which in turn help us design new therapeutics immune engineering.展开更多
Softswitch technology integrates the su-periorities of both an intelligence net-work and the Internet, which embodiesits maturity and advancement. With ahierarchical network model, it effectivelysolves problems of evo...Softswitch technology integrates the su-periorities of both an intelligence net-work and the Internet, which embodiesits maturity and advancement. With ahierarchical network model, it effectivelysolves problems of evolution and convergenceof current communication networks. It also fol-展开更多
Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive prop...Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive properties for sensor and other applications. Protocols for 3-D self-assembly that can be scaled up for mass production on a large up to tonnage)scale, while preserving morphological features on a small (down to nanometer)scale,are needed to allow for widespread use of 3-D nanostructures in advanced devices.However,these often conflicting requirements of scalability and precision pose a difficult challenge for synthetic (man-made)processing routes.展开更多
Optical frequency combs play a crucial role in optical communications,time-frequency metrology,precise ranging,and sensing.Among various generation schemes,resonant electro-optic combs are particularly attractive for ...Optical frequency combs play a crucial role in optical communications,time-frequency metrology,precise ranging,and sensing.Among various generation schemes,resonant electro-optic combs are particularly attractive for their excellent stability,flexibility,and broad bandwidths.In this approach,an optical pump undergoes multiple electro-optic modulation processes in a high-Q optical resonator,resulting in cascaded spectral sidebands.However,most resonant electro-optic combs to date make use of lumped-capacitor electrodes with relatively inefficient utilization of the input electrical power.This design also reflects most electrical power back to the driving circuits and necessitates costly radio-frequency(RF)isolators in between,presenting substantial challenges in practical applications.To address these issues,we present an RF circuit friendly electro-optic frequency comb generator incorporated with on-chip coplanar microwave resonator electrodes,based on a thin-film lithium niobate platform.Our design achieves more than three times electrical power reduction with minimal reflection at the designed comb repetition rate of~25 GHz.We experimentally demonstrate broadband electro-optic frequency comb generation with a comb span of>85 nm at a moderate electrical driving power of740 m W(28.7 d Bm).Our power-efficient and isolator-free electro-optic comb source could offer a compact,low-cost,and simple-to-design solution for applications in spectroscopy,high-precise metrology,and optical communications.展开更多
1.Data security in smart manufacturing The global manufacturing sector is undergoing a digital transformation as traditional systems-reliant on physical assets such as raw materials and labor-struggle to meet demands ...1.Data security in smart manufacturing The global manufacturing sector is undergoing a digital transformation as traditional systems-reliant on physical assets such as raw materials and labor-struggle to meet demands for greater flexibility and efficiency.The integration of advanced information technology facilitates smart manufacturing(SM),which optimizes production,management,and supply chains[1].展开更多
Moisture enabled electric generation(MEG)is an innovative green energy technology that converts the chemical potential energy of atmospheric water vapor into electricity.Here,we report a novel molecular-level zero-dim...Moisture enabled electric generation(MEG)is an innovative green energy technology that converts the chemical potential energy of atmospheric water vapor into electricity.Here,we report a novel molecular-level zero-dimensional(0D)perovskite-based MEG device that efficiently harvests ambient moisture to generate electric power,which makes perovskite a new kind of potential MEG.The 0D perovskite,DAP₂PbI₆,(where DAP is 1,3-bis(ammonium)-2-hydroxypropane diiodide.)features a unique hydrogen-bonding network formed between its ammonium(–NH_(3)^(+))and hydroxyl(–OH)groups,imparting water stability and remarkable hydrophilicity.Such robust interactions facilitate water adsorption and the subsequent release of hydrogen ions under humid conditions.These protonic species establish an ion gradient,driving a directional current via the ion-gradient diffusion–induced voltage.We demonstrated a maximum volumetric power density of 45 mW·cm^(–3)—substantially exceeding previously reported values for protein-or carbon-based MEG.Additionally,SEM and AFM analyses confirm DAP₂PbI₆is stable upon moisture exposure,while temperature-dependent impedance spectroscopy and theoretical calculations reveal that proton diffusion is the primary mechanism for the observed moisture-driven electricity.These findings underscore the promise of hydrophilic 0D perovskite materials for high-efficiency MEG and pave the way for next-generation sustainable power applications.展开更多
High-dimensional(HD)entanglement of photonic orbital angular momentum(OAM)is pivotal for advancing quantum communication and information processing,but its characterization remains significant challenges due to the co...High-dimensional(HD)entanglement of photonic orbital angular momentum(OAM)is pivotal for advancing quantum communication and information processing,but its characterization remains significant challenges due to the complexity of quantum state tomography and experimental limitations such as low photon counts caused by losses.Here,we propose a pre-trained physics-informed neural network(PTPINN)framework that enables efficient and rapid reconstruction of HD-OAM entangled states under low photon counts.Experimental results show that the fidelity of five-dimensional OAM entanglement reaches F=0.958±0.010 even with an exposure time as short as 50 ms.This highlights the capability of PTPINN to achieve high-precision quantum state reconstruction with limited photons,owing to its innovative designs,thus overcoming the reliance on high photon counts typical of traditional methods.Our method provides a practical and scalable solution for high-fidelity characterization of HD-OAM entanglement in environments with low photon numbers and high noise,paving the way for robust long-distance quantum information transmission.展开更多
This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement ...This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement of intelligent emergency,further improving the effectiveness of intelligent emergency management.First,approximately 3,900 documents from the intelligent emergency field are analyzed to determine the future research trend in intelligent emergency management.The socio-technical theory concerning technical and social systems is introduced.The emergency management system concepts of“technology enabling”and“enabling value creation”are defined according to bibliometric analysis and socio-technical theory.Second,a research framework that includes technology enabling and enabling value creation for the decision-making paradigm in emergency management according to the big data environment is constructed.A detailed analysis approach from intelligent emergency technology enabling to enabling value creation in emergency management is proposed.Finally,earthquake disasters are taken as examples,and specific analyses of the intelligent emergency enabling and enabling value creation are explored;enabling value creation is discussed based on measurable indicators.The clear concept of emergency management system technology enabling and enabling value creation,as well as the detailed analysis approach from intelligent emergency technology enabling to enabling value creation,provide a theoretical bases for scholars and practitioners to evaluate the value(performance)of intelligent emergency for the first time.展开更多
Translation regulation is an important layer of gene expression:Generation of genome-wide expression datasets at multi-omics levels in spatial,temporal,and cell-type resolution is essential for deciphering brain compl...Translation regulation is an important layer of gene expression:Generation of genome-wide expression datasets at multi-omics levels in spatial,temporal,and cell-type resolution is essential for deciphering brain complexity.Regulation of gene expression is a highly dynamic process aiming at the production of precise levels of gene products to guarantee optimal cellular function,in response to physiological cues.Speedy advances in next-generation sequencing enabled the understanding of epigenomic and transcriptomic dynamic landscapes of different brain regions along development,aging,and disease progression.However,the correlation of the“transcriptome”with protein levels is poor because numerous mRNAs are subjected to manipulation of their translation efficiency,to warrant a favorable result under certain conditions.Hence,it is widely accepted that regulation at the translation level is a vital layer of gene expression.Quantification of actively translated mRNA populations(i.e.,“translatome”)is a more reliable predictor of the“proteome”(Wang et al.,2020).展开更多
Artificial neural networks are capable of machine learning by simulating the hiera rchical structure of the human brain.To enable learning by brain and machine,it is essential to accurately identify and correct the pr...Artificial neural networks are capable of machine learning by simulating the hiera rchical structure of the human brain.To enable learning by brain and machine,it is essential to accurately identify and correct the prediction errors,referred to as credit assignment(Lillicrap et al.,2020).It is critical to develop artificial intelligence by understanding how the brain deals with credit assignment in neuroscience.展开更多
Digital avatars have become a standard feature on e-commerce platforms.As virtual hosts,they emulate human behavior,broadcast live programs without interruption,and present“Made in China”products to foreign consumer...Digital avatars have become a standard feature on e-commerce platforms.As virtual hosts,they emulate human behavior,broadcast live programs without interruption,and present“Made in China”products to foreign consumers,thanks to their proficiency in multiple languages.The impressive efficiency of these digital avatars is made possible by the colossal computing power that enables them to perform their functions.“This year,the storage requirements of the digital avatars have increased significantly,by approximately 500 times compared to last year.The current local storage capacity is no longer sufficient.”展开更多
The high-luminosity Superτ-Charm Factory(STCF)will be a crucial facility for charm-physics research,particularly for the precise measurement of electroweak parameters,measuring D^(0)-D^(-)^(0)mixing parameters,invest...The high-luminosity Superτ-Charm Factory(STCF)will be a crucial facility for charm-physics research,particularly for the precise measurement of electroweak parameters,measuring D^(0)-D^(-)^(0)mixing parameters,investigating conjugation–parity(CP)violation within the charm sector,searching for the rare and forbidden decays of charmed hadrons,and addressing other foundational questions related to charmed hadrons.With the world’s largest charm-threshold data,the STCF aims to achieve high sensitivity in studying the strong phase of neutral D mesons using quantum correlation,complementing studies at LHCb and Belle II,and contributing to the understanding of CP violations globally.The STCF will also enable world-leading precision in measuring the leptonic decays of charmed mesons and baryons,providing constraints on the Cabibbo–Kobayashi–Maskawa matrix and strong-force dynamics.Additionally,the STCF will explore charmed hadron spectroscopy.The advanced detector and clean experimental environment of the STCF will enable unprecedented precision,help address key challenges in the Standard Model,and facilitate the search for potential new physics.展开更多
Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide.Among the advanced digital technologies,digital twin(DT)has gained promi...Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide.Among the advanced digital technologies,digital twin(DT)has gained prominence across various engineering sectors,including the manufacturing and construction industries.Specifically,road engineering has demonstrated a growing interest in DT and has achieved promising results in DT-related applications over the past several years.This paper systematically introduces the development of DT and examines its current state in road engineering by reviewing research articles on DT-enabling technologies,such as model creation,condition sensing,data processing,and interaction,as well as its applications throughout the lifecycle of road infrastructure.The findings indicate that research has primarily focused on data perception and virtual model creation,while realtime data processing and interaction between physical and virtual models remain underexplored.DT in road engineering has been predominantly applied during the operation and maintenance phases,with limited attention given to the construction and demolition phases.Future efforts should focus on establishing uniform standards,developing innovative perception and data interaction techniques,optimizing development costs,and expanding the scope of lifecycle applications to facilitate the digital transformation of road engineering.This review provides a comprehensive overview of state-of-the-art advancements in this field and paves the way for leveraging DT in road infrastructure lifecycle management.展开更多
Due to the special structural feature and versatile reactivity towards various types of transformations,alkynes have inspired continuous research interest for their generation,incorporation and application in organic ...Due to the special structural feature and versatile reactivity towards various types of transformations,alkynes have inspired continuous research interest for their generation,incorporation and application in organic synthesis,chemical biology and material science[1].Notably,since its invention in 1975,the Sonogashira reaction,which efficiently couples aryl halides with aryl or vinyl terminal alkynes via Pd(0)/Cu(I)synergistic catalysis.展开更多
Currently,driven by the accelerated iteration of digital technologies such as big data,cloud computing,and artificial intelligence,the digital economy has become a crucial engine for generating new quality productive ...Currently,driven by the accelerated iteration of digital technologies such as big data,cloud computing,and artificial intelligence,the digital economy has become a crucial engine for generating new quality productive forces and promoting industrial upgrading.Building on a systematic review of the theoretical evolution and measurement methods of the digital economy and new quality productive forces,this paper outlines their enabling mechanisms,industrial synergy pathways,and policy practices,and summarizes regional disparities and spatial spillover effects.The main findings are as follows:First,the digital economy reshapes the traditional factor structure and significantly enhances total factor productivity through the permeation of data elements and technological innovation;Second,driven jointly by the consumer internet and the industrial internet,it optimizes supply–demand matching and service models while reducing operating costs and improving production efficiency;Third,policy environments and institutional coordination amplify the enabling effects,as evidenced notably in national big-data pilot zones and the“East Data West Computing”initiative.Looking ahead,empirical research should deepen the exploration of micro-level mechanisms and dynamic panel analyses,construct a measurement system of new quality productive forces that spans macro,meso,and micro scales,and investigate pathways for regional collaborative governance and green digital integration to address the complex challenges of the new era.展开更多
Under the strategy of building an educational power country,the reform of higher mathematics teaching should take into account both value guidance and digital innovation.This study,guided by the“educationalist spirit...Under the strategy of building an educational power country,the reform of higher mathematics teaching should take into account both value guidance and digital innovation.This study,guided by the“educationalist spirit”,explores the integration of course ideological education into teaching and leverages digital innovation for empowerment.Analyzing the literature reveals that there is a gap in the connection between the“educationalist spirit”theory and the“digital and intelligent technology”practice.Therefore,a“spiritual guidance–technological empowerment”dual-wheel driving model is proposed,along with the corresponding framework and path.Research shows that this model can enhance teaching effectiveness and educational quality,providing an integrated path for cultivating top-notch innovative talents.展开更多
Decision Support Tool(DST)enables farmers to make site-specific crop management decisions;however,comprehensive calibration can be both costly and time-consuming.This study assessed the production and economic benefit...Decision Support Tool(DST)enables farmers to make site-specific crop management decisions;however,comprehensive calibration can be both costly and time-consuming.This study assessed the production and economic benefits of two calibrations of the Nutrient Expert(NE)tool for rice in Sri Lanka’s Alfisols:the basic calibration(Nutrient Expert Sri Lanka 1,NESL1)and the comprehensive calibration(Nutrient Expert Sri Lanka 2,NESL2).NESL1 was developed by adapting the South Indian version of NE to local conditions,while NESL2 was an updated version,using three years of data from 71 farmer fields.展开更多
基金Supported by the National Key Research and Development Program of China (Grant No.2016YFA0302001)the National Natural Science Foundation of China (Grant Nos.11774224,12074244,11521404,and 61701394)+1 种基金support from the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningadditional support from a Shanghai talent program。
文摘Detection of local strain at the nanometer scale with high sensitivity remains challenging.Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency.As a non-polar crystal,intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency.The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon.The activated phonon further interacts with continuum electronic transitions,and generates a strong Fano resonance.The resulted Fano resonance features a very sharp near-field infrared scattering peak,which leads to an extraordinary sensitivity of-0.002%for the strain detection.Our results demonstrate the first nano-scale near-field Fano resonance,provide a new way to probe local strains with high sensitivity in non-polar crystals,and open exciting possibilities for studying strain-induced rich phenomena.
文摘The immune checkpoint blockade has revolutionized cancer treatment.However,not all cancer types are susceptible to this therapy.Even in melanoma,one of the best scenario,about half of the patients do not respond to immune checkpoint blockade.Since CD8+T cell is the main driving force behind cancer elimination,then having a complete and competent T cell repertoire to cover all possible cancer antigens expressed by cancer cells should be a determining factor to the success of this therapy.Conversely,if there are'holes'in patients’T cell repertoire and/or'weak spots'manifested as functional dysregulation or exhaustion on T cells specific to a set of cancer antigens that dominantly expressed by cancer cells,cancer immune escape is inevitable.However,these two types of cancer immune escape might need different treatment strategies:the first group with'holes'in the T cell repertoire,whether the'holes'are taking on a form of missing T cells to cover these cancer antigens or missing high-affinity TCRs that are known to be more sensitive to antigen stimulation,would be benefited from TCR re-directed adoptive cell transfer(ACT)therapy;the other group with T cell repertoire'weak spots'would be benefited from immune checkpoint blockade alone or in combination with additional stimulatory factors such as cytokines and peptide vaccine.In the past decade,we have developed several tools to profile the T cell repertoire from T cell receptor diversity to T cell receptor affinity to high-throughput linking antigen specificity to single T cell receptor sequences in large scale.In this talk,I will first introduce these tools and then give examples on how we use them to answer some of the fundamental questions in systems immunology with a focus on cancer immunology,which in turn help us design new therapeutics immune engineering.
文摘Softswitch technology integrates the su-periorities of both an intelligence net-work and the Internet, which embodiesits maturity and advancement. With ahierarchical network model, it effectivelysolves problems of evolution and convergenceof current communication networks. It also fol-
文摘Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive properties for sensor and other applications. Protocols for 3-D self-assembly that can be scaled up for mass production on a large up to tonnage)scale, while preserving morphological features on a small (down to nanometer)scale,are needed to allow for widespread use of 3-D nanostructures in advanced devices.However,these often conflicting requirements of scalability and precision pose a difficult challenge for synthetic (man-made)processing routes.
基金Research Grants Council,University Grants Committee(CityU 11212721,CityU 11204022,N_City U113/20)Croucher Foundation(9509005)City University of Hong Kong(9610682)。
文摘Optical frequency combs play a crucial role in optical communications,time-frequency metrology,precise ranging,and sensing.Among various generation schemes,resonant electro-optic combs are particularly attractive for their excellent stability,flexibility,and broad bandwidths.In this approach,an optical pump undergoes multiple electro-optic modulation processes in a high-Q optical resonator,resulting in cascaded spectral sidebands.However,most resonant electro-optic combs to date make use of lumped-capacitor electrodes with relatively inefficient utilization of the input electrical power.This design also reflects most electrical power back to the driving circuits and necessitates costly radio-frequency(RF)isolators in between,presenting substantial challenges in practical applications.To address these issues,we present an RF circuit friendly electro-optic frequency comb generator incorporated with on-chip coplanar microwave resonator electrodes,based on a thin-film lithium niobate platform.Our design achieves more than three times electrical power reduction with minimal reflection at the designed comb repetition rate of~25 GHz.We experimentally demonstrate broadband electro-optic frequency comb generation with a comb span of>85 nm at a moderate electrical driving power of740 m W(28.7 d Bm).Our power-efficient and isolator-free electro-optic comb source could offer a compact,low-cost,and simple-to-design solution for applications in spectroscopy,high-precise metrology,and optical communications.
基金supported in part by the National Natural Science Foundation of China(62293511 and 62402256)in part by the Shandong Provincial Natural Science Foundation of China(ZR2024MF100)+1 种基金in part by the Taishan Scholars Program(tsqn202408239)in part by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(ICT2025B13).
文摘1.Data security in smart manufacturing The global manufacturing sector is undergoing a digital transformation as traditional systems-reliant on physical assets such as raw materials and labor-struggle to meet demands for greater flexibility and efficiency.The integration of advanced information technology facilitates smart manufacturing(SM),which optimizes production,management,and supply chains[1].
基金supported by the National Natural Science Foundation of China(Nos.52102217,52102332)the Natural Science Foundation of Fujian Province(2021J05120).
文摘Moisture enabled electric generation(MEG)is an innovative green energy technology that converts the chemical potential energy of atmospheric water vapor into electricity.Here,we report a novel molecular-level zero-dimensional(0D)perovskite-based MEG device that efficiently harvests ambient moisture to generate electric power,which makes perovskite a new kind of potential MEG.The 0D perovskite,DAP₂PbI₆,(where DAP is 1,3-bis(ammonium)-2-hydroxypropane diiodide.)features a unique hydrogen-bonding network formed between its ammonium(–NH_(3)^(+))and hydroxyl(–OH)groups,imparting water stability and remarkable hydrophilicity.Such robust interactions facilitate water adsorption and the subsequent release of hydrogen ions under humid conditions.These protonic species establish an ion gradient,driving a directional current via the ion-gradient diffusion–induced voltage.We demonstrated a maximum volumetric power density of 45 mW·cm^(–3)—substantially exceeding previously reported values for protein-or carbon-based MEG.Additionally,SEM and AFM analyses confirm DAP₂PbI₆is stable upon moisture exposure,while temperature-dependent impedance spectroscopy and theoretical calculations reveal that proton diffusion is the primary mechanism for the observed moisture-driven electricity.These findings underscore the promise of hydrophilic 0D perovskite materials for high-efficiency MEG and pave the way for next-generation sustainable power applications.
基金supported by the National Natural Science Foundation of China(12234009,12474328,12074196,11922406,and 12074197)。
文摘High-dimensional(HD)entanglement of photonic orbital angular momentum(OAM)is pivotal for advancing quantum communication and information processing,but its characterization remains significant challenges due to the complexity of quantum state tomography and experimental limitations such as low photon counts caused by losses.Here,we propose a pre-trained physics-informed neural network(PTPINN)framework that enables efficient and rapid reconstruction of HD-OAM entangled states under low photon counts.Experimental results show that the fidelity of five-dimensional OAM entanglement reaches F=0.958±0.010 even with an exposure time as short as 50 ms.This highlights the capability of PTPINN to achieve high-precision quantum state reconstruction with limited photons,owing to its innovative designs,thus overcoming the reliance on high photon counts typical of traditional methods.Our method provides a practical and scalable solution for high-fidelity characterization of HD-OAM entanglement in environments with low photon numbers and high noise,paving the way for robust long-distance quantum information transmission.
基金the National Natural Science Foundation of China(Grant No.:71771061).
文摘This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement of intelligent emergency,further improving the effectiveness of intelligent emergency management.First,approximately 3,900 documents from the intelligent emergency field are analyzed to determine the future research trend in intelligent emergency management.The socio-technical theory concerning technical and social systems is introduced.The emergency management system concepts of“technology enabling”and“enabling value creation”are defined according to bibliometric analysis and socio-technical theory.Second,a research framework that includes technology enabling and enabling value creation for the decision-making paradigm in emergency management according to the big data environment is constructed.A detailed analysis approach from intelligent emergency technology enabling to enabling value creation in emergency management is proposed.Finally,earthquake disasters are taken as examples,and specific analyses of the intelligent emergency enabling and enabling value creation are explored;enabling value creation is discussed based on measurable indicators.The clear concept of emergency management system technology enabling and enabling value creation,as well as the detailed analysis approach from intelligent emergency technology enabling to enabling value creation,provide a theoretical bases for scholars and practitioners to evaluate the value(performance)of intelligent emergency for the first time.
基金funded by the Israel Science Foundation(grants No.1036/12 and 1228/20)(to OES).
文摘Translation regulation is an important layer of gene expression:Generation of genome-wide expression datasets at multi-omics levels in spatial,temporal,and cell-type resolution is essential for deciphering brain complexity.Regulation of gene expression is a highly dynamic process aiming at the production of precise levels of gene products to guarantee optimal cellular function,in response to physiological cues.Speedy advances in next-generation sequencing enabled the understanding of epigenomic and transcriptomic dynamic landscapes of different brain regions along development,aging,and disease progression.However,the correlation of the“transcriptome”with protein levels is poor because numerous mRNAs are subjected to manipulation of their translation efficiency,to warrant a favorable result under certain conditions.Hence,it is widely accepted that regulation at the translation level is a vital layer of gene expression.Quantification of actively translated mRNA populations(i.e.,“translatome”)is a more reliable predictor of the“proteome”(Wang et al.,2020).
基金supported by the National Natural Science Foundation of China,No.62276089。
文摘Artificial neural networks are capable of machine learning by simulating the hiera rchical structure of the human brain.To enable learning by brain and machine,it is essential to accurately identify and correct the prediction errors,referred to as credit assignment(Lillicrap et al.,2020).It is critical to develop artificial intelligence by understanding how the brain deals with credit assignment in neuroscience.
文摘Digital avatars have become a standard feature on e-commerce platforms.As virtual hosts,they emulate human behavior,broadcast live programs without interruption,and present“Made in China”products to foreign consumers,thanks to their proficiency in multiple languages.The impressive efficiency of these digital avatars is made possible by the colossal computing power that enables them to perform their functions.“This year,the storage requirements of the digital avatars have increased significantly,by approximately 500 times compared to last year.The current local storage capacity is no longer sufficient.”
文摘The high-luminosity Superτ-Charm Factory(STCF)will be a crucial facility for charm-physics research,particularly for the precise measurement of electroweak parameters,measuring D^(0)-D^(-)^(0)mixing parameters,investigating conjugation–parity(CP)violation within the charm sector,searching for the rare and forbidden decays of charmed hadrons,and addressing other foundational questions related to charmed hadrons.With the world’s largest charm-threshold data,the STCF aims to achieve high sensitivity in studying the strong phase of neutral D mesons using quantum correlation,complementing studies at LHCb and Belle II,and contributing to the understanding of CP violations globally.The STCF will also enable world-leading precision in measuring the leptonic decays of charmed mesons and baryons,providing constraints on the Cabibbo–Kobayashi–Maskawa matrix and strong-force dynamics.Additionally,the STCF will explore charmed hadron spectroscopy.The advanced detector and clean experimental environment of the STCF will enable unprecedented precision,help address key challenges in the Standard Model,and facilitate the search for potential new physics.
基金supported by the National Key Research and Development Program of China(2022YFB2602103 and 2023YFA1008900)。
文摘Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide.Among the advanced digital technologies,digital twin(DT)has gained prominence across various engineering sectors,including the manufacturing and construction industries.Specifically,road engineering has demonstrated a growing interest in DT and has achieved promising results in DT-related applications over the past several years.This paper systematically introduces the development of DT and examines its current state in road engineering by reviewing research articles on DT-enabling technologies,such as model creation,condition sensing,data processing,and interaction,as well as its applications throughout the lifecycle of road infrastructure.The findings indicate that research has primarily focused on data perception and virtual model creation,while realtime data processing and interaction between physical and virtual models remain underexplored.DT in road engineering has been predominantly applied during the operation and maintenance phases,with limited attention given to the construction and demolition phases.Future efforts should focus on establishing uniform standards,developing innovative perception and data interaction techniques,optimizing development costs,and expanding the scope of lifecycle applications to facilitate the digital transformation of road engineering.This review provides a comprehensive overview of state-of-the-art advancements in this field and paves the way for leveraging DT in road infrastructure lifecycle management.
文摘Due to the special structural feature and versatile reactivity towards various types of transformations,alkynes have inspired continuous research interest for their generation,incorporation and application in organic synthesis,chemical biology and material science[1].Notably,since its invention in 1975,the Sonogashira reaction,which efficiently couples aryl halides with aryl or vinyl terminal alkynes via Pd(0)/Cu(I)synergistic catalysis.
文摘Currently,driven by the accelerated iteration of digital technologies such as big data,cloud computing,and artificial intelligence,the digital economy has become a crucial engine for generating new quality productive forces and promoting industrial upgrading.Building on a systematic review of the theoretical evolution and measurement methods of the digital economy and new quality productive forces,this paper outlines their enabling mechanisms,industrial synergy pathways,and policy practices,and summarizes regional disparities and spatial spillover effects.The main findings are as follows:First,the digital economy reshapes the traditional factor structure and significantly enhances total factor productivity through the permeation of data elements and technological innovation;Second,driven jointly by the consumer internet and the industrial internet,it optimizes supply–demand matching and service models while reducing operating costs and improving production efficiency;Third,policy environments and institutional coordination amplify the enabling effects,as evidenced notably in national big-data pilot zones and the“East Data West Computing”initiative.Looking ahead,empirical research should deepen the exploration of micro-level mechanisms and dynamic panel analyses,construct a measurement system of new quality productive forces that spans macro,meso,and micro scales,and investigate pathways for regional collaborative governance and green digital integration to address the complex challenges of the new era.
基金High-level talent start-up fund project of Gan Dong University,Research on Ideological and Political Education of Higher Mathematics under the Leadership of Educator Spirit(Project No.:12225000408)。
文摘Under the strategy of building an educational power country,the reform of higher mathematics teaching should take into account both value guidance and digital innovation.This study,guided by the“educationalist spirit”,explores the integration of course ideological education into teaching and leverages digital innovation for empowerment.Analyzing the literature reveals that there is a gap in the connection between the“educationalist spirit”theory and the“digital and intelligent technology”practice.Therefore,a“spiritual guidance–technological empowerment”dual-wheel driving model is proposed,along with the corresponding framework and path.Research shows that this model can enhance teaching effectiveness and educational quality,providing an integrated path for cultivating top-notch innovative talents.
基金supported by the National Research Council of Sri Lanka(Grant No.NRC TO 16-07).
文摘Decision Support Tool(DST)enables farmers to make site-specific crop management decisions;however,comprehensive calibration can be both costly and time-consuming.This study assessed the production and economic benefits of two calibrations of the Nutrient Expert(NE)tool for rice in Sri Lanka’s Alfisols:the basic calibration(Nutrient Expert Sri Lanka 1,NESL1)and the comprehensive calibration(Nutrient Expert Sri Lanka 2,NESL2).NESL1 was developed by adapting the South Indian version of NE to local conditions,while NESL2 was an updated version,using three years of data from 71 farmer fields.